Match Query 是最常用的 Full Text Query 。无论需要查询什么字段, match 查询都应该会是首选的查询方式。它既能处理全文字段,又能处理精确字段。
为了能够在后面能深入理解 Match Query 中的各个属性的意义,我们先构建一个 index 示例(有兴趣的同学只要将下面字段粘贴到 sense 中就可以创建)。
PUT matchtest
{
}
PUT matchtest/_mapping/people
{
"properties": {
"age": {
"type": "integer"
},
"hobbies": {
"type": "text"
},
"name": {
"type": "keyword"
}
}
}
PUT matchtest/people/1
{
"name" : "Jim",
"age": 10,
"hobbies": "football, basketball, pingpang"
}
PUT matchtest/people/2
{
"name" : "Tom",
"age": 12,
"hobbies": "swimming, football"
}
match 查询是一种 bool 类型的查询。什么意思呢?举个例子,查询 people type 的 hobbies 为 football和basketball。
GET matchtest/people/_search
{
"query": {
"match": {
"hobbies": "football basketball"
}
}
}
会将上面的两个文档都搜索出来。为什么?上面的查询其实隐藏了一个默认参数operator
, 它的默认值是 or
,也就是说上面的查询也可以写成这种形式:
GET matchtest/people/_search
{
"query": {
"match": {
"hobbies": {
"query": "football basketball",
"operator": "or"
}
}
}
}
这样就比较容易理解了,既然是 or
操作符,就表示只要查询的文档的 hobbies 字段中含有 football 和 basketball 任意一个,就可以被匹配到。
如果将 operator 操作符的值改为 and
,则表示需要同时包含 football 和 basketball , 得到的结果就只能是 文档 1
Jim 小朋友了。
analyzer 属性是指在对查询文本分析时的分析器
这里我们也没有指定,就会使用默认的,就不举例了,在后面文章讲解 analyzer 时再拓展。
lenient:宽容
默认值是 false , 表示用来在查询时如果数据类型不匹配且无法转换时会报错。如果设置成 true 会忽略错误。
例如, 例子中的 age 是 integer
类型的,如果查询 age=xxy
,就会导致无法转换而报错。
GET matchtest/_search
{
"query": {
"match": {
"age" : {
"query": "xxx"
}
}
}
}
而如果将 lenient 参数设置为 true
,就会忽略这个错误。
GET matchtest/_search
{
"query": {
"match": {
"age" : {
"query": "xxx",
"lenient": true
}
}
}
}
注意:
如果将 age 字段的值设置为字符串 “10”, 来查询,由于能够转换成整数,这时 elastic 内部会将 字符串先转换成整数再做查询,不会报错。
fuzziness 参数可以是查询的字段具有模糊搜索的特性。来先了解下什么是模糊搜索。
模糊搜索是指系统允许被搜索信息和搜索提问之间存在一定的差异,这种差异就是“模糊”在搜索中的含义。例如,查找名字Smith时,就会找出与之相似的Smithe, Smythe, Smyth, Smitt等。
——百度百科
通过模糊搜索可以查询出存在一定相似度的单词,那么怎么计算两个单词是否有相似度以及相似度的大小呢?这就要了解下另外一个概念:Levenshtein Edit Distance
Levenshtein Edit Distance
叫做莱文斯坦距离,是编辑距离的一种。指两个字串之间,由一个转成另一个所需的最少编辑操作次数。允许的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如,单词 “god” 只需要插入一个 ‘o’ 字符就可以变为 “good”,因此它们之间的编辑距离为 1。
了解了上面两个概念,回过头再来看下 fuzziness 参数。
在查询 text 或者 keyword 类型的字段时, fuzziness 可以看做是莱文斯坦距离。
fuzziness
参数的取值如下:
0,1,2
:表示最大可允许的莱文斯坦距离AUTO
AUTO:[low],[high]
, 分别表示短距离参数和长距离参数;如果没有指定,默认值是 AUTO:3,6
表示的意义如下:0..2
:单词长度为 0 到 2 之间时必须要精确匹配,这其实很好理解,单词长度太短是没有相似度可言的,例如 ‘a’ 和 ‘b’。3..5
:单词长度 3 到 5 个字母时,最大编辑距离为 1>5
:单词长度大于 5 个字母时,最大编辑距离为 2最佳实践: fuzziness 在绝大多数场合都应该设置成 AUTO
如果不设置 fuziness 参数,查询是精确匹配的。
来看例子,下面创建了一个 doc:
PUT matchtest/people/1
{
"name" : "Jim",
"age": 10,
"hobbies": "football, basketball, pingpang"
}
设置 fuzziness 为 AUTO
:
其中 hobbies 字段的值 football 长度 > 5
, 此时我们找一个编辑距离为 2
的单词 footba22 来查询,应该匹配到,
其中 name 字段的值 jim 长度在 3 和 5 之间,此时找一个编辑距离为 1
的单词 jiO 应匹配到,而编辑距离为 2
的 jOO 就不应匹配到。
GET matchtest/_search
{
"query": {
"match": {
"hobbies": {
"query": "footba22",
"fuzziness": "AUTO"
}
}
}
}
GET matchtest/_search
{
"query": {
"match": {
"name": {
"query": "jiO",
"fuzziness": "AUTO"
}
}
}
}
GET matchtest/_search
{
"query": {
"match": {
"name": {
"query": "jOO",
"fuzziness": "AUTO"
}
}
}
}
prefix_length
表示不能被模糊化的初始字符数。由于大部分的拼写错误发生在词的结尾,而不是词的开始,使用 prefix_length
就可以完成优化。
注意:
prefix_length 必须结合 fuzziness 参数使用。
例如,在查询 hobbies 中的 football 时,将 prefix_length 参数设置为 3,这时 foatball 将不能被匹配。
GET matchtest/_search
{
"query": {
"match": {
"hobbies": {
"query": "foatball",
"fuzziness": "AUTO",
"prefix_length": 3
}
}
}
}
先看例子, 先创建一个文档 zero_terms_query_test 其中 message 字段使用 stop 分析器,这个分析器会将 stop words 停用词在索引时全都去掉。
PUT matchtest1
PUT matchtest1/_mapping/zero_terms_query_test
{
"properties": {
"message": {
"type": "text",
"analyzer": "stop"
}
}
}
PUT matchtest1/zero_terms_query_test/1
{
"message": "to be or not to be"
}
GET matchtest1/_search
{
"query": {
"match": {
"message": {
"query": "to be or not to be",
"operator": "and",
"zero_terms_query": "none"
}
}
}
}
那么就像 message 字段中的 to be or not to be
这个短语中全部都是停止词,一过滤,就什么也没有了,得不到任何 tokens, 那搜索时岂不什么都搜不到。
POST _analyze
{
"analyzer": "stop",
"text": "to be or not to be"
}
zero_terms_query
就是为了解决这个问题而生的。它的默认值是 none ,就是搜不到停止词(对 stop 分析器字段而言),如果设置成 all ,它的效果就和 match_all 类似,就可以搜到了。
GET matchtest1/_search
{
"query": {
"match": {
"message": {
"query": "to be or not to be",
"operator": "and",
"zero_terms_query": "all"
}
}
}
}
查询字符串时的词项会分成低频词(更重要)和高频词(次重要)两类,像前面所说的停用词 (stop word)就属于高频词,它虽然出现频率较高,但在匹配时可能并不太相关。
实际上,我们往往是想要文档能尽可能的匹配那些低频词,也就是更重要的词项。
要实现这个需求,只要在查询时配置 cutoff_frequency
参数就可以了。假设我们将 cutoff_frequency
设置成 0.01
就表示:
从而将高频词(次重要的词)挪到可选子查询中,让它们只参与评分,而不参与匹配;高频词(更重要的词)参与匹配和评分。
这样一来,就不再需要 stopwords 停用词文件了,从而变成了动态生成停用词: 高频词就会被看做是停用词。这种配置只是对于词项比较多的场合如 email body,文章等适用,文字太少, cutoff_frequency 选项设置的意义就不大了。
cutoff_frequency
配置有两种形式:
下面给个例子, 在创建的 3 个文档中都包含 "be " 的单词,在查询时将 cutoff_frequency 参数设置为 2, 表示 “be” 就是高频词,只会参与评分,但在匹配时不做考虑。
此时查询的内容为 “to be key” ,由于 “be” 词项是高频词,因为在文档中必须要存在 “to” 或者 “key” 才能匹配,因此文档 3 不能匹配。
PUT /matchtest2
PUT matchtest2/_mapping/cutoff_frequency_test
{
"properties": {
"message": {
"type": "text"
}
}
}
PUT matchtest2/cutoff_frequency_test/1
{
"message": "to be or not to be to be or"
}
PUT matchtest2/cutoff_frequency_test/2
{
"message": "be key or abc"
}
PUT matchtest2/cutoff_frequency_test/3
{
"message": "or to be or to to be or"
}
GET matchtest2/_search
{
"query": {
"match": {
"message": {
"query": "to be key",
"cutoff_frequency": 2
}
}
}
}
synonyms 是指同义词,只要索引和字段中配置了同义词过滤器,match 查询是支持多词条的同义词扩展的。在应用过滤器后,解析器会对每个多次条同义词创建一个语句查询。
例如,同义词 USA, united states of America 就会构建出 (USA OR (“united states of America”))。看下面例子:
PUT /matchtest4
{
"settings": {
"index" : {
"analysis" : {
"analyzer" : {
"synonym" : {
"tokenizer" : "whitespace",
"filter" : ["synonym"]
}
},
"filter" : {
"synonym" : {
"type" : "synonym",
"synonyms" : [
"USA, united states of America"
]
}
}
}
}
}
}
PUT /matchtest4/_mapping/synonyms_test
{
"properties": {
"message": {
"type": "text",
"analyzer": "synonym"
}
}
}
PUT /matchtest4/synonyms_test/1
{
"message": "united states of America people"
}
GET /matchtest4/_search
{
"query": {
"match": {
"message": {
"query": "USA"
}
}
}
}
本文以代码实例的方式完整的讲解了 Match Query 的各种使用场景和参数意义。