cs231n-assignment1-kNN部分

  • 作业下载地址:点击这里
  • 本部分包含knn.ipynb和cs231n/classifiers/k_nearest_neighbor.py两个文件
  • 问题总结
    • 几行magic line:% matplotlib inline可以让matplotlib在代码所在cell中绘图,而不是重启另一个cell;% load_ext auto reload% auto reload 2可以让代码在外部模块修改后自动加载
    • numpy.linalg模块是关于线性代数(Linear Algebra的缩写)的一些方法,其中np.linalg.norm可以用来求各种范式cs231n-assignment1-kNN部分_第1张图片对向量来说默认是二范数,也就是说当其参数ord=None时np.linalg.norm(a)等价于np.sqrt(np.sum(np.square(a)))
  • 下面是需要填的部分代码,仅供参考
    • knn.ipynb
num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []
################################################################################
# TODO:                                                                        #
# Split up the training data into folds. After splitting, X_train_folds and    #
# y_train_folds should each be lists of length num_folds, where                #
# y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
# Hint: Look up the numpy array_split function.                                #
################################################################################
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}


################################################################################
# TODO:                                                                        #
# Perform k-fold cross validation to find the best value of k. For each        #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all     #
# values of k in the k_to_accuracies dictionary.                               #
################################################################################
for k in k_choices:
    k_to_accuracies[k] = []
    for i in range(num_folds):
        X_train_remain = np.delete(X_train_folds, i, axis=0)
        y_train_remain = np.delete(y_train_folds, i, axis=0)
        X_train_v = np.reshape(X_train_remain, (-1, X_train_remain.shape[-1]))
        y_train_v = np.reshape(y_train_remain, (y_train_remain.shape[0]*y_train_remain.shape[1],))
        classifier.train(X_train_v, y_train_v)
        y_pred_i = classifier.predict(X_train_folds[i], k, num_loops=0)
        num_corrected_i = np.sum(y_pred_i == y_train_folds[i])
        k_to_accuracies[k].append(float(num_corrected_i) / y_train_folds[i].shape[0])
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print('k = %d, accuracy = %f' % (k, accuracy))
  • cs231n/classifiers/k_nearest_neighbor.py
    def compute_distances_two_loops(self, X):
        """
    Compute the distance between each test point in X and each training point
    in self.X_train using a nested loop over both the training data and the 
    test data.

    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data.

    Returns:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      is the Euclidean distance between the ith test point and the jth training
      point.
    """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in xrange(num_test):
            for j in xrange(num_train):
                #####################################################################
                # TODO:                                                             #
                # Compute the l2 distance between the ith test point and the jth    #
                # training point, and store the result in dists[i, j]. You should   #
                # not use a loop over dimension.                                    #
                #####################################################################
                dists[i, j] = np.linalg.norm(np.subtract(X[i],self.X_train[j]))
                #####################################################################
                #                       END OF YOUR CODE                            #
                #####################################################################
        return dists

    def compute_distances_one_loop(self, X):
        """
    Compute the distance between each test point in X and each training point
    in self.X_train using a single loop over the test data.

    Input / Output: Same as compute_distances_two_loops
    """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in xrange(num_test):
            #######################################################################
            # TODO:                                                               #
            # Compute the l2 distance between the ith test point and all training #
            # points, and store the result in dists[i, :].                        #
            #######################################################################
            dists[i, :] = np.sqrt(np.sum(np.transpose(np.square(self.X_train - X[i])), axis=0))
            #######################################################################
            #                         END OF YOUR CODE                            #
            #######################################################################
        return dists

    def compute_distances_no_loops(self, X):
        """
    Compute the distance between each test point in X and each training point
    in self.X_train using no explicit loops.

    Input / Output: Same as compute_distances_two_loops
    """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        #########################################################################
        # TODO:                                                                 #
        # Compute the l2 distance between all test points and all training      #
        # points without using any explicit loops, and store the result in      #
        # dists.                                                                #
        #                                                                       #
        # You should implement this function using only basic array operations; #
        # in particular you should not use functions from scipy.                #
        #                                                                       #
        # HINT: Try to formulate the l2 distance using matrix multiplication    #
        #       and two broadcast sums.                                         #
        #########################################################################
        dists = np.sqrt(np.sum(np.square(X), axis=1, keepdims=True) - 2 * np.dot(X, np.transpose(self.X_train)) + np.sum(np.square(np.transpose(self.X_train)), axis=0, keepdims=True)) 
        #########################################################################
        #                         END OF YOUR CODE                              #
        #########################################################################
        return dists

    def predict_labels(self, dists, k=1):
        """
    Given a matrix of distances between test points and training points,
    predict a label for each test point.

    Inputs:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      gives the distance betwen the ith test point and the jth training point.

    Returns:
    - y: A numpy array of shape (num_test,) containing predicted labels for the
      test data, where y[i] is the predicted label for the test point X[i].  
    """
        num_test = dists.shape[0]
        y_pred = np.zeros(num_test)
        for i in xrange(num_test):
            # A list of length k storing the labels of the k nearest neighbors to
            # the ith test point.
            closest_y = []
            #########################################################################
            # TODO:                                                                 #
            # Use the distance matrix to find the k nearest neighbors of the ith    #
            # testing point, and use self.y_train to find the labels of these       #
            # neighbors. Store these labels in closest_y.                           #
            # Hint: Look up the function numpy.argsort.                             #
            #########################################################################
            closest_y = self.y_train[np.argsort(dists[i, :])[:k]]
            #########################################################################
            # TODO:                                                                 #
            # Now that you have found the labels of the k nearest neighbors, you    #
            # need to find the most common label in the list closest_y of labels.   #
            # Store this label in y_pred[i]. Break ties by choosing the smaller     #
            # label.                                                                #
            #########################################################################
            y_pred[i] = np.argmax(np.bincount(closest_y))
            #########################################################################
            #                           END OF YOUR CODE                            #
            #########################################################################

        return y_pred

你可能感兴趣的:(深度学习)