一、 SAD算法
1.算法原理
SAD(Sum of absolute differences)是一种图像匹配算法。基本思想:差的绝对值之和。此算法常用于图像块匹配,将每个像素对应数值之差的绝对值求和,据此评估两个图像块的相似度。该算法快速、但并不精确,通常用于多级处理的初步筛选。
2.基本流程
输入:两幅图像,一幅Left-Image,一幅Right-Image
对左图,依次扫描,选定一个锚点:
(1)构造一个小窗口,类似于卷积核;
(2)用窗口覆盖左边的图像,选择出窗口覆盖区域内的所有像素点;
(3)同样用窗口覆盖右边的图像并选择出覆盖区域的像素点;
(4)左边覆盖区域减去右边覆盖区域,并求出所有像素点灰度差的绝对值之和;
(5)移动右边图像的窗口,重复(3)-(4)的处理(这里有个搜索范围,超过这个范围跳出);
(6)找到这个范围内SAD值最小的窗口,即找到了左图锚点的最佳匹配的像素块。
参考代码:SAD.h
#include"iostream"
#include"opencv2/opencv.hpp"
#include"iomanip"
using namespace std;
using namespace cv;
class SAD
{
public:
SAD():winSize(7),DSR(30){}
SAD(int _winSize,int _DSR):winSize(_winSize),DSR(_DSR){}
Mat computerSAD(Mat &L,Mat &R); //计算SAD
private:
int winSize; //卷积核的尺寸
int DSR; //视差搜索范围
};
Mat SAD::computerSAD(Mat &L,Mat &R)
{
int Height=L.rows;
int Width=L.cols;
Mat Kernel_L(Size(winSize,winSize),CV_8U,Scalar::all(0));
Mat Kernel_R(Size(winSize,winSize),CV_8U,Scalar::all(0));
Mat Disparity(Height,Width,CV_8U,Scalar(0)); //视差图
for(int i=0;i=0)
{
Kernel_R=R(Rect(x,j,winSize,winSize));
Mat Dif;
absdiff(Kernel_L, Kernel_R, Dif);//
Scalar ADD=sum(Dif);
float a=ADD[0];
MM.at(k)=a;
}
}
Point minLoc;
minMaxLoc(MM, NULL, NULL,&minLoc,NULL);
int loc=minLoc.x;
//int loc=DSR-loc;
Disparity.at(j,i)=loc*16;
}
double rate=double(i)/(Width);
cout<<"已完成"<
// MySAD.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include"SAD.h"
int _tmain(int argc, _TCHAR* argv[])
{
Mat Img_L=imread("imL.png",0);
Mat Img_R=imread("imR.png",0);
Mat Disparity; //视差图
//SAD mySAD;
SAD mySAD(7,30);
Disparity=mySAD.computerSAD(Img_L,Img_R);
imshow("Img_L",Img_L);
imshow("Img_R",Img_R);
imshow("Disparity",Disparity);
waitKey();
return 0;
}
二、BM算法:速度很快,效果一般
SGBM算法 Stereo Processing by Semiglobal Matching and Mutual Information
GC算法 算法文献:Realistic CG Stereo Image Dataset with Ground Truth Disparity Maps
参考:http://blog.csdn.net/wqvbjhc/article/details/6260844
void BM()
{
IplImage * img1 = cvLoadImage("left.png",0);
IplImage * img2 = cvLoadImage("right.png",0);
CvStereoBMState* BMState=cvCreateStereoBMState();
assert(BMState);
BMState->preFilterSize=9;
BMState->preFilterCap=31;
BMState->SADWindowSize=15;
BMState->minDisparity=0;
BMState->numberOfDisparities=64;
BMState->textureThreshold=10;
BMState->uniquenessRatio=15;
BMState->speckleWindowSize=100;
BMState->speckleRange=32;
BMState->disp12MaxDiff=1;
CvMat* disp=cvCreateMat(img1->height,img1->width,CV_16S);
CvMat* vdisp=cvCreateMat(img1->height,img1->width,CV_8U);
int64 t=getTickCount();
cvFindStereoCorrespondenceBM(img1,img2,disp,BMState);
t=getTickCount()-t;
cout<<"Time elapsed:"<
三、SGBM算法
作为一种全局匹配算法,立体匹配的效果明显好于局部匹配算法,但是同时复杂度上也要远远大于局部匹配算法。算法主要是参考Stereo Processing by Semiglobal Matching and Mutual Information。
opencv中实现的SGBM算法计算匹配代价没有按照原始论文的互信息作为代价,而是按照块匹配的代价。
参考:http://www.opencv.org.cn/forum.php?mod=viewthread&tid=23854
#include
#include
#include
#include
using namespace std;
using namespace cv;
int main()
{
IplImage * img1 = cvLoadImage("left.png",0);
IplImage * img2 = cvLoadImage("right.png",0);
cv::StereoSGBM sgbm;
int SADWindowSize = 9;
sgbm.preFilterCap = 63;
sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3;
int cn = img1->nChannels;
int numberOfDisparities=64;
sgbm.P1 = 8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
sgbm.minDisparity = 0;
sgbm.numberOfDisparities = numberOfDisparities;
sgbm.uniquenessRatio = 10;
sgbm.speckleWindowSize = 100;
sgbm.speckleRange = 32;
sgbm.disp12MaxDiff = 1;
Mat disp, disp8;
int64 t = getTickCount();
sgbm((Mat)img1, (Mat)img2, disp);
t = getTickCount() - t;
cout<<"Time elapsed:"<
四、GC算法 效果最好,速度最慢
void GC()
{
IplImage * img1 = cvLoadImage("left.png",0);
IplImage * img2 = cvLoadImage("right.png",0);
CvStereoGCState* GCState=cvCreateStereoGCState(64,3);
assert(GCState);
cout<<"start matching using GC"<height,img1->width,CV_16S);
CvMat* gcdispright=cvCreateMat(img2->height,img2->width,CV_16S);
CvMat* gcvdisp=cvCreateMat(img1->height,img1->width,CV_8U);
int64 t=getTickCount();
cvFindStereoCorrespondenceGC(img1,img2,gcdispleft,gcdispright,GCState);
t=getTickCount()-t;
cout<<"Time elapsed:"<