- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- 性能优化案例:通过合理设置spark.shuffle.memoryFraction参数的值来优化PySpark程序的性能
weixin_30777913
pythonspark大数据
在PySpark中,合理调整spark.shuffle.memoryFraction参数可以有效优化Shuffle阶段的性能,尤其是在存在大量磁盘溢出的场景下。通过合理设置spark.shuffle.memoryFraction并结合其他优化手段,可显著减少Shuffle阶段的磁盘I/O,提升PySpark作业的整体性能。以下是优化案例的总结及分步说明:优化背景问题现象:PySpark作业在Shu
- 【Python数据分析】Pandas_Series如何转变为DataFrame
Root_Smile
【Python数据分析】python数据分析pandas
1.使用pd.DataFrame()构造函数可以使用pd.DataFrame()构造函数将Series转换为DataFrame。在构造函数中,将Series作为一个列传递给DataFrame,并且可以通过指定列名来为DataFrame的列命名。代码示例:importpandasaspddata=[10,20,30,40,50]index=['A','B','C','D','E']series=pd
- (6) 深入探索Python-Pandas库的核心数据结构:DataFrame全面解析
码界领航
pandas数据结构pythonnumpy
目录前言1.DataFrame简介2.DataFrame的特点3.DataFrame的创建3.1使用字典创建DataFrame3.2使用列表的列表(或元组)创建DataFrame3.3使用NumPy数组创建DataFrame3.4使用Series构成的字典创建DataFrame3.5使用字典构成的字典创建DataFrame4.从CSV文件读取5.DataFrame的属性和方法5.1查看DataFr
- 初始Pandas数据结构(DataFrame和Series)
aerfaqi
数据分析python数据挖掘
认识PandasPandas是Python语言的一个扩展程序库,用于数据挖掘和数据分析,同时也提供数据清洗功能。pandas(paneldata&dataanalysis),是基于numpy(提供高性能的矩阵运算)专门用于数据分析的工具,是一个强大的分析结构化数据(表格数据)的工具集;Pandas的操作是基于两种结构:DataFrame结构和Series结构DataFrame每一列都为Series
- spark集群完全分布式搭建
。 。,。,。
分布式spark大数据
1.spark的运行架构(主从模式)主节点:master-----资源管理调度和任务的分配---------类似yarn从节点:worker-----执行具体的计算任务整体运行架构:编写spark运行程序用户将应用程序提交给spark集群驱动其会创建对应的编程入口(sparkcontext/sparksession)主节点复制资源管理调度和任务分配从节点执行计算任务(多个计算任务:每个计算任务会分
- Python酷库之旅-第三方库Pandas(005)
神奇夜光杯
pythonpandas开发语言标准库及第三方库基础知识学习和成长
目录一、用法精讲7、pandas.read_clipboard函数7-1、语法7-2、参数7-3、功能7-4、返回值7-5、说明7-6、用法7-6-1、代码示例7-6-2、结果输出8、pandas.DataFrame.to_clipboard函数8-1、语法8-2、参数8-3、功能8-4、返回值8-5、说明8-6、用法8-6-1、代码示例8-6-2、结果输出9、pandas.read_excel函
- 基于Python+Spark的气象天气分析大屏可视化系统设计与实现毕设源码
sj52abcd
pythonspark课程设计毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着我国气象事业的发展,气象数据的实时分析和可视化成为越来越重要的任务。然而,目前气象数据的分析与展示手段仍然较为传统,缺乏交互性,不能满足现代气象业务的需求。因此,研究一种基于Pytho
- 基于Spark的实时计算服务的流程架构
小小搬运工40
spark大数据
基于Spark的实时计算服务的流程架构通常涉及多个组件和步骤,从数据采集到数据处理,再到结果输出和监控。以下是一个典型的基于Spark的实时计算服务的流程架构:1.数据源数据源是实时计算服务的起点,常见的数据源包括:消息队列:如Kafka、RabbitMQ、AmazonKinesis等。日志系统:如Flume、Logstash等。传感器数据:物联网设备产生的数据流。数据库变更数据捕获(CDC):如
- OpenCV 功能函数介绍 (二)
ኈ ቼ ዽ
人工智能算法
一,梯度处理的sobel算子函数功能:用于计算图像梯度(gradient)的函数参数:cv2.Sobel(src,ddepth,dx,dy,ksize=3,scale=1,delta=0,borderType=None)cv2.Sobel(输入图像,应该是灰度化后的图像输出图像的所需深度,:-1来表示与输入图像相同的深度x方向上的导数阶数,如果你想要计算x方向上的梯度,设置这个参数为1;如果你不关
- Phaser引擎开发:Phaser基础入门_Phaser引擎概述
chenlz2007
游戏开发2html5游戏音视频前端html
Phaser引擎概述什么是Phaser引擎Phaser是一个免费的、开源的、基于Web的2D游戏开发引擎,使用JavaScript和HTML5Canvas或WebGL技术。Phaser的目的是让游戏开发者能够轻松地创建高性能的2D游戏,适用于桌面和移动平台。Phaser支持多种游戏开发需求,包括精灵管理、物理引擎、动画、输入处理、音频和视频处理等。Phaser的历史Phaser由RichardDa
- Python实现图像(边缘)锐化:梯度锐化、Roberts 算子、Laplace算子、Sobel算子的详细方法
闲人编程
pythonpython计算机视觉人工智能SobelLaplaceRoberts锐化
目录Python实现图像(边缘)锐化:梯度锐化、Roberts算子、Laplace算子、Sobel算子的详细方法引言一、图像锐化的基本原理1.1什么是图像锐化?1.2边缘检测的基本概念二、常用的图像锐化算法2.1梯度锐化2.1.1实现步骤2.2Roberts算子2.2.1实现步骤2.3Laplace算子2.3.1实现步骤2.4Sobel算子2.4.1实现步骤三、Python实现图像锐化3.1导入必
- Pandas基础01(Series创建/索引/切片/属性/方法/运算)
XYX的Blog
数据分析与可视化pandas
Pandas基础Pandas是一个功能强大的数据分析和操作库,主要用于处理和分析表格型数据(例如:CSV、Excel、SQL数据库等)。它建立在NumPy基础上,提供了许多便捷的数据结构,主要是Series和DataFrame,用于处理和分析数据。3.1Series数据结构Series是一种类似于一维数组的对象,它包含了一组数据(可以是整数、浮点数等)以及与之相关的标签(索引)。可以将Series
- Scala在大数据和分布式计算领域的应用与优势
夜色呦
scala大数据开发语言
大数据和分布式计算是当今信息技术领域的热点话题,它们处理着海量数据并需要高效的计算能力。Scala,作为一种多范式编程语言,因其在并发编程和函数式编程方面的优势,成为大数据和分布式计算领域的理想选择。本文将探讨Scala在这些领域的应用,并分析其带来的优势。1.大数据和分布式计算的挑战在大数据时代,数据量呈指数级增长,传统的数据处理方法已经无法满足需求。分布式计算提供了一种解决方案,通过在多个物理
- RDD 算子全面解析:从基础到进阶与面试要点
天冬忘忧
Sparkspark大数据
Spark的介绍与搭建:从理论到实践_spark环境搭建-CSDN博客Spark的Standalone集群环境安装与测试-CSDN博客PySpark本地开发环境搭建与实践-CSDN博客Spark程序开发与提交:本地与集群模式全解析-CSDN博客SparkonYARN:Spark集群模式之Yarn模式的原理、搭建与实践-CSDN博客Spark中RDD的诞生:原理、操作与分区规则-CSDN博客Spar
- Java web 富文本内容生成转为word格式并导出下载
摘星喵Pro
javaweb编程技巧java前端servlet
Javaweb富文本内容生成转为word格式并导出下载最近思路,按标签逐一解析,实现复杂一点但是完美解决问题:https://blog.csdn.net/a2272062968/article/details/126227076思路:Word是完全支持html标签的,但是富文本内容并不是完整的html代码,需要先补全html标签,然后转码输出问题:虽然导出worddoc但是事件内容流还是htm,只
- Python中opencv的一些函数及应用
灵封~
pythonopencv开发语言
Sobel算子函数功能:Sobel算子用于计算图像的梯度(变化率),常用于边缘检测。它通过对图像应用一个基于一阶导数的滤波器来强调图像中的边缘部分,特别是水平和垂直方向上的边缘。通过计算图像的梯度,可以获得图像中亮度变化较大的地方,这些地方通常是物体的边界。Sobel算子有两个方向的变体:SobelX:计算水平方向的梯度。SobelY:计算垂直方向的梯度。Sobel算子函数:cv2.Sobel()
- OpenCV相关函数
〖是♂我〗
opencv计算机视觉图像处理
一、Sobel算子函数(cv2.Sobel)功能Sobel算子是一个梯度算子,用于边缘检测。通过计算图像中像素的梯度,Sobel算子可以检测出水平和垂直方向上的边缘。参数src:输入图像。ddepth:输出图像的深度(如cv2.CV_8U,cv2.CV_64F)。一般为cv2.CV_8U(8位无符号整数)或cv2.CV_64F(64位浮动数)。dx:计算导数的x方向阶数,dx=1表示计算x方向的导
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- anaconda中pyspark_自学大数据——9 Anaconda安装与使用pyspark
步六孤陆
首先从Anaconda官网上下载Anaconda。一、解压安装包sudobashAnaconda3-2020.07-Linux-x86_64.shchown-Rhadoop:hadoop/opt/anaconda/vi/etc/profileexportANACONDA_HOME=/opt/anacondaexportPATH=$PATH:$ANACONDA_HOME/bin:source/etc
- PySpark数据处理过程简析
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介PySpark是ApacheSpark的PythonAPI,可以用Python进行分布式数据处理,它在内存中利用了ApacheHadoopYARN资源调度框架对数据进行并行处理。PySpark可以直接使用Hadoop文件系统、HDFS来存储数据,也可以通过S3、GCS、ADLS等云存储平台保存数据。因此,在不同的数据源之间移动数据时,只需要复制一次数据就可以完成
- 2022-02-09大数据学习日志——PySpark——Spark快速入门&Standalone集群
王络不稳定
sparkbigdata大数据
第一部分Spark快速入门01_Spark快速入门【Anaconda软件安装】[掌握]使用Python编写Spark代码,首先需要安装Python语言包,此时安装Anaconda科学数据分析包。Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。Anaconda是跨平台的,有Windows、MacOS、Linux版本。#下载地址:ht
- PySpark
rainyrainbow
大数据hadoop
1.PySpark的搭建https://blog.csdn.net/qq_36330643/article/details/78429109PySpark是Spark为Python开发者提供的API,位于$SPARK_HOME/bin目录,其依赖于Py4J。在Pycharm中配置使用spark1.在Pycharm中新建python项目,解释器使用的是python3.4File=>Settings切
- spark2如何集成到cdh里
蘑菇丁
经验hadoop大数据+机器学习+oracle
最近做性能测试需要spark2测试下和spark1.6性能有多大差别,官方文档里写着可以集成,但是自己怎么搞都不行,折磨了3天的时间,目前终于把spark2集成到集群里了我安装的是最新版本的下载spark2安装包wgethttp://archive.cloudera.com/beta/spark2/parcels/latest/SPARK2-2.0.0.cloudera.beta2-1.cdh5.
- 大数据之Spark运行流程
「已注销」
Spark大数据sparkhadoop
文章目录前言(一)SparkOnYarn集群的Client模式运行流程(二)SparkOnYarn集群的Cluster模式运行流程总结前言上篇文章有讨论到SparkOnYarn的两种部署模式,如果有不清楚的地方,可以再看看,附上对应文章的链接:Spark的部署模式,本篇文章主要讨论SparkOnYarn两种部署模式的运行流程。(一)SparkOnYarn集群的Client模式运行流程该模式的Dri
- R语言学习笔记6-数据框
Colin♛
r语言学习笔记开发语言信息可视化
R语言学习笔记6-数据框数据框(DataFrame)介绍数据框用途创建数据框从矩阵创建数据框索引和切片添加和修改列数据框的预处理数据框的排序数据框的筛选处理缺失值应用函数处理数据重塑数据框使用dplyr进行数据框的管道操作数据框的时间序列操作大数据框的处理数据框的绘图数据框的文本处理数据框的连接与关联按行或列连接数据框按键值关联数据框数据框的条件处理与逻辑操作条件筛选逻辑操作数据框的汇总与统计分析
- HBase工具类(Scala 版)
Amin-沐
大数据私人日记帮助文档hbasescalaspark大数据
objectHBaseHelper{privatevallogger=LoggerFactory.getLogger(getClass)valQUORUM:String=PropertiesUtils.getString("hbase.zookeeper.quorum")valPORT:String=PropertiesUtils.getString("hbase.zookeeper.port")
- xgboost-spark-scala
maokunnn
DMxgboostsparkscala
今天学习写scala,拿xgboost试一下~先记一下xgboost调参要点:7.xgboost中比较重要的参数介绍(1)objective[default=reg:linear]定义学习任务及相应的学习目标,可选的目标函数如下:“reg:linear”–线性回归。“reg:logistic”–逻辑回归。“binary:logistic”–二分类的逻辑回归问题,输出为概率。“binary:logi
- 3-scala的类
qwy715229258163
scalascala开发语言后端
Scala中的类是用于创建对象的蓝图,其中包含了方法、常量、变量、类型、对象、特质、类,这些统称为成员。类型、对象和特质将在后面的文章中介绍。类定义一个最简的类的定义就是关键字class+标识符,类名首字母应大写。classUservaluser1=newUser关键字new被用于创建类的实例。User由于没有定义任何构造器,因而只有一个不带任何参数的默认构造器。然而,你通常需要一个构造器和类体。
- pandas合并groupby_遍历Pandas Groupby和合并DataFrames
weixin_39616367
pandas合并groupby
Thisseemslikeitshouldbestraightforwardbutisstumpingme.ReallylovebeingabletoiteratethroughthegroupsofagroupbyoperationandIamgettingtheresultIwantfromthegroupbybutIamunabletomergethefinalresultintooneda
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s