- 深度学习相关指标工作笔记
Victor Zhong
AI框架深度学习笔记人工智能
这里写目录标题检测指标iou/Gou/Diou/CiouMSE(MeanSquaredError)(均方误差)(回归问题)交叉熵损失函数(CrossEntropyErrorFunction)(分类问题)检测指标iou/Gou/Diou/CiouIntersectionoverUnion(IoU)是目标检测里一种重要的评价值交并比令人遗憾的是IoU无法优化无重叠的bboxes如果用IoU作为loss
- win10安装Ubuntu22.04LTS及深度学习相关配置详细教学
向来痴_
深度学习人工智能
由于之前Ubuntu系统硬盘空间分配的不够,又去看了一下发现扩容很很麻烦。加以发现自己前面安装的深度学习环境版本与实际要用的不符,所以当机立断决定直接重装系统。Ubuntu系统安装参考视频:一看就会!8分钟真机安装【Ubuntu/Windows】双系统_哔哩哔哩_bilibili镜像文件:ubuntu-22.04.4-desktop-amd64.iso按win键搜索磁盘管理打开,压缩卷得到256G
- 深度学习入门:如何从零开始搭建自己的深度学习模型?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介深度学习(DeepLearning)近几年已经成为人们关注的热点话题。从2012年的ImageNet竞赛开始,激起了众多研究者的兴趣,也带来了越来越多的应用场景。随着技术的飞速发展,深度学习已经成为了各个领域最具潜力的技术。作为一名AI科研工作者,了解、掌握深度学习相关知识可以帮助你更好地理解并解决实际问题。本文将全面介绍深度学习的基础知识、技术要点及其应用。文
- 【TensorFlow系列教程第二章】深入理解 TensorFlow 中的张量、计算图与会话
代码简单说
#TensorFlow教程tensorflowneo4j人工智能TensorFlow张量TensorFlow计算图TensorFlow会话
深入理解TensorFlow中的张量、计算图与会话摘要:本文旨在详细介绍TensorFlow中几个核心概念——张量(Tensor)、计算图(ComputationalGraph)以及会话(Session),帮助读者更好地掌握TensorFlow框架,为后续进行深度学习相关的开发与实践奠定基础。一、张量(Tensor)在TensorFlow中,张量(Tensor)类似于NumPy中的数组,是一个多维
- 转onnx模型学习汇总及TensorRT部署
天亮换季
人工智能自动驾驶持续部署pytorch算法深度学习python
文章目录一写在前面二学习过程三模型转换(三种算法均开源)1.MatrixVT转onnx和TensorRT2.BEVPoolV2转onnx和TensorRT3.BEVDepth转模型四总结一写在前面 深度学习火起来已近十年,于当下的算法岗位而言,多数都在基于深度学习方式或者深度学习相关方法做研发,但算法研发发展至今,对研发人员的要求绝不会限于公开数据集的使用、开源模型的训练、网络模块的堆加等,需要
- 【AI模型】谷歌开源Magenta项目介绍
姑苏老陈
人工智能学习入门人工智能开源音乐AI模型谷歌Magenta项目
本文收录于《人工智能学习入门》专栏。从零基础开始,分享一些人工智能、机器学习、深度学习相关的知识,包括基本概念、技术原理、应用场景以及如何开发实战等等。相信完整学习后会有很多收获。欢迎关注,谢谢!文章目录一、前言二、Magenta的核心目标1.**生成艺术与音乐**2.**探索人机协作**3.**开源社区驱动**三、Magenta技术与功能四、应用场景五、如何开始使用Magenta1.
- 【Bug】 [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed
shanks66
Bugbugssl网络协议
当你在进行深度学习相关操作时,若因缺少本地的CA证书而无法下载资源,下面为你介绍几种解决办法:方法一:更新CA证书在大多数Linux发行版中,你可以使用包管理器来更新CA证书。例如,在基于Debian或Ubuntu的系统中,你可以运行以下命令:sudoapt-getupdatesudoapt-getinstall--reinstallca-certificates在基于RedHat或CentOS的
- 【AI编程】使用DeepSeek AI 编程体验
姑苏老陈
人工智能学习入门AI编程人工智能Deepseek
本文收录于《人工智能学习入门》专栏。从零基础开始,分享一些人工智能、机器学习、深度学习相关的知识,包括基本概念、技术原理、应用场景以及如何开发实战等等。相信完整学习后会有很多收获。欢迎关注,谢谢!文章目录一、前言二、DeepSeekAI编程体验记录2.1完整代码2.2特性说明2.3使用说明2.4注意事项三、总结一、前言最近收到一个开发任务,需要编写一个Python脚本,实现自动从服务器的网盘上把所
- 【DeepSeek + Chatbox】本地局域网多用户协作全流程!从本地部署到高效交互,深度学习任务这样搞就对了~
磕盐小宋的日常
深度学习人工智能
文章目录『概要』『干货分享』『技术细节』『DeepSeek概述』『工作站配置』『所实现的功能』『具体实现流程』『短板与前瞻』『总结』『概要』最近团队在搞深度学习相关的研究,遇到了个头大的问题:设备依赖太重,每个人都要配备高性能硬件才能跑模型。于是我开始思考,有没有办法让大家共享资源,降低设备要求?经过一番调研和实践,我们终于打通了DeepSeek平台+Chatbox可视化界面的全流程局域网协作方案
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- 用大模型学大模型03-数学基础 概率论
wyg_031113
概率论人工智能
https://metaso.cn/s/Jp0OU9w提示词:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例。好的,我现在需要回答用户关于深度学习所需的概率论与统计学入门教程和实例的问题。用户希望得到一个完整的教程和实例,所以我要从我搜索到的资料中整理出相关的知识点和学习路径,并结合实例说明。首先,查看证据中的相关内容。提到花书学习笔记,涵盖了概率论、信
- 深度学习篇---深度学习相关知识点&关键名词含义
Ronin-Lotus
深度学习篇深度学习人工智能机器学习pytorchpaddlepaddlepython
文章目录前言第一部分:相关知识点一、基础铺垫层(必须掌握的核心基础)1.数学基础•线性代数•微积分•概率与统计2.编程基础3.机器学习基础二、深度学习核心层(神经网络与训练机制)1.神经网络基础2.激活函数(ActivationFunction)3.损失函数(LossFunction)4.优化算法(Optimization)5.反向传播(Backpropagation)6.正则化与调优三、进阶模型
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- MixRec: Heterogeneous Graph Collaborative Filtering
UnknownBody
Recommendation人工智能
本文是深度学习相关文章,针对《MixRec:HeterogeneousGraphCollaborativeFiltering》的翻译。MixRec:异构图协同过滤摘要1引言2前言3方法4评估5相关工作6结论摘要对于现代推荐系统来说,使用低维潜在表示来嵌入用户和基于他们观察到的交互的项目已经变得司空见惯。然而,许多现有的推荐模型主要是为粗粒度和同质交互而设计的,这限制了它们在两个关键维度上的有效性。
- 深度学习-笔记1
深度学习神经网络
刚开始接触深度学习相关内容,在这儿做一个笔记:网址:https://gitee.com/paddlepaddle/PaddleNLPpaddle-nlp是一个自然语言处理NLP方面的工具包(代码库)ERNIEERNIE是百度基于BERT改进的预训练大模型,结合了Transformer架构和知识增强机制。整体上可以分为预训练模型层和任务适配层,预训练模型层负责学习通用的语言知识和语义表示,任务适配层
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- 深度学习相关知识--池化
已经大四了,继续努力
深度学习计算机视觉人工智能
池化概念池化分为最大池化(用的多一些)和平均池化最大池化是选出区域内最大值作为池化后的值,如下图所示:平均池化是选择区域内平均值作为池化后的值,如下图所示:概念很浅显,但是对于刚入门的人来说,很难知道池化到底能干啥,局限性是什么。池化作用:1.减少运算量,这个还好理解,因为数据量变少了,后期计算量肯定也少了2.防止过拟合,因为池化可以把一张大图变成一张小图,但是保留了重要特征,这样使得模型学习时能
- numpy 矩阵乘法_一起学习Python常用模块——numpy
weixin_39636099
numpy矩阵乘法numpy矩阵乘法python对ndarray全体除以一个数python稀疏矩阵乘法python空数组python安装numpy模块
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- python 对ndarray全体除以一个数_一起学习Python常用模块——numpy
weixin_39785814
python对ndarray全体除以一个数python空数组python数组全部平方
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- 阿里云人工智能工程师ACP认证考试:15天备考到通过经验分享
North_D
AI人工智能阿里云人工智能经验分享
阿里云人工智能工程师ACP认证考试:15天备考到通过经验分享机缘:以证促学在工作中,接触并使用深度学习相关技术已经有4、5年左右,具备一些AI相关的理论和经验。随着2023年AIGC的火热,个人的热情被带动起来,有必要系统、全面的对人工智能、机器学习、深度学习进行总结和再学习。那就设立一个可量化的学习目标吧:考个人工智能相关的认证,以证促学。踅摸了一圈,将目标确定为阿里云人工智能工程师ACP认证。
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 深度学习相关软件安装与环境配置(windows版本)
欧阳颖
python机器学习神经网络深度学习pycharm
本文介绍了学习Python以及深度学习过程中常用软件的安装与环境配置。目录一.Anaconda1.1Anaconda简介1.2Anaconda安装1.3Anaconda环境配置二.安装GPU版本的PyTorch库三.安装和配置PyCharm3.1Python、PyCharm和Anaconda的关系3.2安装3.3配置一.Anaconda1.1Anaconda简介Anaconda是专门为了方便使用P
- 李沐《动手学深度学习》注意力机制
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
程序员一诺
python笔记人工智能深度学习深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 李沐《动手学深度学习》循环神经网络 经典网络模型
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能pytorch神经网络
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 李沐《动手学深度学习》卷积神经网络 经典网络模型
丁希希哇
李沐《动手学深度学习》学习笔记深度学习cnn神经网络算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念目录系列文章一、LeNet
- 【深度学习】从0完整讲透深度学习第2篇:TensorFlow介绍和基本操作(代码文档已分享)
程序员一诺
python笔记深度学习人工智能深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 机器学习、深度学习、自然语言处理基础知识总结
北航程序员小C
机器学习专栏人工智能学习专栏深度学习专栏机器学习深度学习自然语言处理
说明机器学习、深度学习、自然语言处理基础知识总结。目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。由于github的markdown解析器不支持latex,因此笔记部分需要在本地使用Typora才能正常浏览,也可以直接访问下面给出的博客链接。Document文件夹下为笔记,Code文件夹下为代码,Data文件夹下为
- 李沐《动手学深度学习》卷积神经网络 相关基础概念
丁希希哇
李沐《动手学深度学习》学习笔记深度学习cnn人工智能pytorch神经网络
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算目录系列文章一、从全连接层到卷积(一)全连接层(二)卷积神经网络的空间不
- 李沐《动手学深度学习》深度学习计算
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能pytorch算法
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念目录系列文章一、层和块(一)块的概念(二)块的实现二、参数管理(一)参数访问:用于调试、诊断和可视化(二)
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比