Java并发编程与高并发解决方案(三)

1:AQS

 

 

AQS组件:CountDownLatch、Semaphone、CyclicBarrier、ReentrrantLock、Condition、FutureTask

1:CountDownLatch

CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

@Slf4j
public class CountDownLatchExample2 {

    private final static int threadCount = 200;
    public static void main(String[] args) throws Exception {
        ExecutorService exec = Executors.newCachedThreadPool();
        final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
        for (int i = 0; i < threadCount; i++) {
            final int threadNum = i;
            exec.execute(() -> {
                try {
                    test(threadNum);
                } catch (Exception e) {
                    log.error("exception", e);
                } finally {
                    countDownLatch.countDown();
                }
            });
        }
        countDownLatch.await(10, TimeUnit.MILLISECONDS);
        log.info("finish");
        exec.shutdown();
    }

    private static void test(int threadNum) throws Exception {
        Thread.sleep(100);
        log.info("{}", threadNum);
    }
}

2:Semaphone

  Semaphore翻译成字面意思为 信号量,Semaphore可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。


@Slf4j
public class SemaphoreExample1 {

    private final static int threadCount = 20;

    public static void main(String[] args) throws Exception {
        ExecutorService exec = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(3);
        for (int i = 0; i < threadCount; i++) {
            final int threadNum = i;
            exec.execute(() -> {
                try {
                    semaphore.acquire(); // 获取一个许可
                    test(threadNum);
                    semaphore.release(); // 释放一个许可
                } catch (Exception e) {
                    log.error("exception", e);
                }
            });
        }
        exec.shutdown();
    }

    private static void test(int threadNum) throws Exception {
        log.info("{}", threadNum);
        Thread.sleep(1000);
    }
}

3:CyclicBarrier

 字面意思回环栅栏,通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier可以被重用。我们暂且把这个状态就叫做barrier,当调用await()方法之后,线程就处于barrier了。

@Slf4j
public class CyclicBarrierExample1 {
    private static CyclicBarrier barrier = new CyclicBarrier(5);
    public static void main(String[] args) throws Exception {
        ExecutorService executor = Executors.newCachedThreadPool();
        for (int i = 0; i < 10; i++) {
            final int threadNum = i;
            Thread.sleep(1000);
            executor.execute(() -> {
                try {
                    race(threadNum);
                } catch (Exception e) {
                    log.error("exception", e);
                }
            });
        }
        executor.shutdown();
    }

    private static void race(int threadNum) throws Exception {
        Thread.sleep(1000);
        log.info("{} is ready", threadNum);
        barrier.await();
        log.info("{} continue", threadNum);
    }
}

4:FutureTask

@Slf4j
public class FutureExample {

    static class MyCallable implements Callable {
        @Override
        public String call() throws Exception {
            log.info("do something in callable");
            Thread.sleep(5000);
            return "Done";
        }
    }

    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        Future future = executorService.submit(new MyCallable());
        log.info("do something in main");
        Thread.sleep(1000);
        String result = future.get();
        log.info("result:{}", result);
    }
}
@Slf4j
public class FutureTaskExample {

    public static void main(String[] args) throws Exception {
        FutureTask futureTask = new FutureTask(new Callable() {
            @Override
            public String call() throws Exception {
                log.info("do something in callable");
                Thread.sleep(5000);
                return "Done";
            }
        });

        new Thread(futureTask).start();
        log.info("do something in main");
        Thread.sleep(1000);
        String result = futureTask.get();
        log.info("result:{}", result);
    }
}

5:ForkJoinTask

@Slf4j
public class ForkJoinTaskExample extends RecursiveTask {

    public static final int threshold = 2;
    private int start;
    private int end;

    public ForkJoinTaskExample(int start, int end) {
        this.start = start;
        this.end = end;
    }

    @Override
    protected Integer compute() {
        int sum = 0;
        //如果任务足够小就计算任务
        boolean canCompute = (end - start) <= threshold;
        if (canCompute) {
            for (int i = start; i <= end; i++) {
                sum += i;
            }
        } else {
            // 如果任务大于阈值,就分裂成两个子任务计算
            int middle = (start + end) / 2;
            ForkJoinTaskExample leftTask = new ForkJoinTaskExample(start, middle);
            ForkJoinTaskExample rightTask = new ForkJoinTaskExample(middle + 1, end);

            // 执行子任务
            leftTask.fork();
            rightTask.fork();

            // 等待任务执行结束合并其结果
            int leftResult = leftTask.join();
            int rightResult = rightTask.join();

            // 合并子任务
            sum = leftResult + rightResult;
        }
        return sum;
    }

    public static void main(String[] args) {
        ForkJoinPool forkjoinPool = new ForkJoinPool();
        //生成一个计算任务,计算1+2+3+4
        ForkJoinTaskExample task = new ForkJoinTaskExample(1, 100);
        //执行一个任务
        Future result = forkjoinPool.submit(task);
        try {
            log.info("result:{}", result.get());
        } catch (Exception e) {
            log.error("exception", e);
        }
    }
}

6:ReentrrantLock

@Slf4j
@ThreadSafe
public class LockExample2 {
    // 请求总数
    public static int clientTotal = 5000;
    // 同时并发执行的线程数
    public static int threadTotal = 200;
    public static int count = 0;
    private final static Lock lock = new ReentrantLock();

    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(threadTotal);
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        log.info("count:{}", count);
    }

    private static void add() {
        lock.lock();
        try {
            count++;
        } finally {
            lock.unlock();
        }
    }
}

 

 

死锁

/**
 * 一个简单的死锁类
 * 当DeadLock类的对象flag==1时(td1),先锁定o1,睡眠500毫秒
 * 而td1在睡眠的时候另一个flag==0的对象(td2)线程启动,先锁定o2,睡眠500毫秒
 * td1睡眠结束后需要锁定o2才能继续执行,而此时o2已被td2锁定;
 * td2睡眠结束后需要锁定o1才能继续执行,而此时o1已被td1锁定;
 * td1、td2相互等待,都需要得到对方锁定的资源才能继续执行,从而死锁。
 */

@Slf4j
public class DeadLock implements Runnable {
    public int flag = 1;
    //静态对象是类的所有对象共享的
    private static Object o1 = new Object(), o2 = new Object();

    @Override
    public void run() {
        log.info("flag:{}", flag);
        if (flag == 1) {
            synchronized (o1) {
                try {
                    Thread.sleep(500);
                } catch (Exception e) {
                    e.printStackTrace();
                }
                synchronized (o2) {
                    log.info("1");
                }
            }
        }
        if (flag == 0) {
            synchronized (o2) {
                try {
                    Thread.sleep(500);
                } catch (Exception e) {
                    e.printStackTrace();
                }
                synchronized (o1) {
                    log.info("0");
                }
            }
        }
    }

    public static void main(String[] args) {
        DeadLock td1 = new DeadLock();
        DeadLock td2 = new DeadLock();
        td1.flag = 1;
        td2.flag = 0;
        //td1,td2都处于可执行状态,但JVM线程调度先执行哪个线程是不确定的。
        //td2的run()可能在td1的run()之前运行
        new Thread(td1).start();
        new Thread(td2).start();
    }
}

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(Java并发编程与高并发解决方案(三))