LightGBM模型引入和原理介绍

GBDT存在的几个问题

如何减少数据量

常用的减少训练数据量的方式是down sample。例如在[5]中,权重小于阈值的数据会被过滤掉,SGB在每一轮迭代中用随机的子集训练弱学习器;在[6]中,采样率会在训练过程中动态调整。但是,所有这些工作除了SGB外都是基于AdaBoost的,并且由于GBDT没有数据实例的权重,所以不能直接运用到GBDT上。虽然SGB可以应用到GBDT,但是它这种做法对acc影响太大了。

如何减少特征

类似的,为了减少特征的数量,需要过滤若特征[22, 23, 7, 24]。这通常用PCA和projection pursuit来做。可是,这些方法高度依赖一个假设,那就是特征包含相当多的冗余的信息。而这个假设在实践中通常不成立(因为通常特征都被设计为具有独特作用的,移除了哪个都可能对训练的acc有影响)

关于稀疏的数据

现实应用中的大规模数据通常是相当稀疏的。使用pre-sorted algorithm的GBDT可以通过忽略值为0的特征来降低训练的开销。而使用histogram-based algorithm的GBDT没有针对稀疏数据的优化方案,因为histogram-based algorithm无论特征值是否为0,都需要检索特征的bin值,所以它能够有效地利用这种稀疏特性。

为了解决上面的这些问题,我们提出了两个新的技术——GOSS和EFB。

引入LightGBM

1.LightGBM是微软2017年新提出的,比Xgboost更强大、速度更快的模型,性能上有很大的提升,与传统算法相比具有的优点:        *更快的训练效率        

       *低内存使用        

       *更高的准确率        

       *支持并行化学习        

       *可处理大规模数据          

       *原生支持类别特征,不需要对类别特征再进行0-1编码这类的

2.LightGBM一大的特点是在传统的GBDT基础上引入了两个 新技术和一个改进:

(1)Gradient-based One-Side Sampling(GOSS)技术是去掉了很大一部分梯度很小的数据,只使用剩下的去估计信息增益,避免低梯度长尾部分的影响。由于梯度大的数据在计算信息增益的时候更重要,所以GOSS在小很多的数据上仍然可以取得相当准确的估计值。

(2)Exclusive Feature Bundling(EFB)技术是指捆绑互斥的特征(i.e.,他们经常同时取值为0),以减少特征的数量。但对互斥特征寻找最佳的捆绑方式是一个NP难问题,当时贪婪算法可以取得相当好的近似率(因此可以在不显著影响分裂点选择的准确性的情况下,显著地减少特征数量)。

(3)在传统GBDT算法中,最耗时的步骤是找到最优划分点,传统方法是Pre-Sorted方式,其会在排好序的特征值上枚举所有可能的特征点,而LightGBM中会使用histogram算法替换了传统的Pre-Sorted。基本思想是先把连续的浮点特征值离散化成k个整数,同时构造出图8所示的一个宽度为k的直方图。最开始时将离散化后的值作为索引在直方图中累积统计量,当遍历完一次数据后,直方图累积了离散化需要的统计量,之后进行节点分裂时,可以根据直方图上的离散值,从这k个桶中找到最佳的划分点,从而能更快的找到最优的分割点,而且因为直方图算法无需像Pre-Sorted那样存储预排序的结果,而只是保存特征离散过得数值,所以使用直方图的方式可以减少对内存的消耗。

  • Pre-sorted 算法需要 O(data) 次的计算
  • Histogram 算法只需要计算 O(bins) 次, 并且 bins 远少于data(直方图仍然需要 O(#data) 次来构建直方图, 而这仅仅包含总结操作,只是第一次做data此即可)

LightGBM模型引入和原理介绍_第1张图片

优势

相比XGboost,其更强大的原因是:          

(1)histogram算法替换了传统的Pre-Sorted,某种意义上是牺牲了精度换取速度,直方图作差构建叶子直方图更有创造力(直方图算法的基本思想:先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。遍历数据时,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点[利于计算分割打分]。)。

(2)带有深度限制的按叶子生长 (leaf-wise) 算法代替了传统的(level-wise) 决策树生长策略,提升精度,同时避免过拟合危险(不太深了)。        

(3)内存做了优化,内存中仅仅需要保存直方图数值,而不是之前的所有数据,另外如果直方图比较小的时候,我们还可以使用保存uint8的形式保存来训练数据。        

(4)额外的优化还有Cache命中率优化、多线程优化。 lightGBM优越性:速度快,代码清晰,占用内存小。lightGBM可以在更小的代价下控制分裂树。有更好的缓存利用,是带有深度限制的按叶子生长的策略,使用了leaf-wise策略,每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后进行分裂,不断的进行循环下去,而lead-wise(智能)算法的缺点是可能生长出比较深的决策树,导致过拟合问题,为了解决过拟合问题,我们会在LightGBM中会对leaf-wise之上增加一个最大深度的限制,在保持高效率的同时防止过拟合。

LightGBM模型引入和原理介绍_第2张图片

 

 

你可能感兴趣的:(LightGBM模型引入和原理介绍)