- 泛微全面接入DeepSeek大模型,助力组织升级数智化应用场景
泛微OA办公系统
泛微DeepSeek
近日,泛微公司旗下所有产品全面接入DeepSeek大模型,借助泛微2024年发布的数智大脑Xiaoe.AI,可快捷方便为客户搭建“DeepSeek大模型+专业小模型+智能体”的数智底座,并可量身定制更安全、高效、国产化的数智化解决方案,助力组织管理与业务、财务一体化数智运营升级。在接入DeepSeek大模型后,泛微将借助DeepSeek强大的自然语言处理、机器学习、推理等能力,显著提升泛微各项产品
- 智能算法的全面应用:量子计算与自动化学习在各行业的创新路径探索
智能计算研究中心
其他
内容概要在现代社会,智能算法的应用逐渐渗透到各个行业,成为推动科技进步的重要力量。自动化机器学习算法通过简化模型训练和调优的过程,为数据科学家节省了大量时间。可解释性算法则旨在让模型的决策过程更加透明,从而提高用户对算法决策的信任。此外,量子算法以其独特的计算能力,展现出在处理复杂问题时潜在的优势。金融风控领域通过运用金融风险预测模型,不仅提高了风险管理效率,还提升了预警能力。医疗影像分析则借助卷
- 使用Python和Vosk库实现语音识别
车载testing
python语音识别开发语言
使用Python和Vosk库实现语音识别在人工智能和机器学习领域,语音识别技术正变得越来越重要。Python作为一种强大的编程语言,拥有丰富的库和框架,可以方便地实现语音识别功能。今天,我们将介绍如何使用Python中的SpeechRecognition库和Vosk模型来实现语音识别。一、SpeechRecognition库的安装SpeechRecognition库是Python中一个简单易用的语
- Python库Numpy学习+代码实例
海绵宝宝
pythonnumpy学习机器学习
前言Numpy是python语言的一个扩充程序库,支持高端大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,现已成为机器学习的必备模块。本文章对Numpy库的原文档进行了学习,可作为文档阅读理解来进行阅读。附原文档链接如下:Numpy库文档库的介绍该库中的对象为多维数组,原名为ndarray,因此经常被叫做array。python中也有一个库叫做array,但是与这里的ndarra
- 深度学习:从神经网络到智能应用
Jason_Orton
深度学习神经网络人工智能机器学习
目录引言一.什么是深度学习?二.深度学习的基本原理1.神经网络的组成2.激活函数3.反向传播(Backpropagation)三.深度学习的常见模型四.深度学习的应用场景五.深度学习的挑战与未来结语引言深度学习(DeepLearning)作为机器学习的一个分支,近年来在人工智能领域取得了革命性的进展。无论是语音识别、图像识别,还是自动驾驶、自然语言处理,深度学习都在推动着技术的发展和行业的变革。那
- 基于Matlab实现汽车远近光灯识别的详细步骤及代码示例
go5463158465
matlab算法机器学习matlab汽车开发语言
以下是一个基于Matlab实现汽车远近光灯识别的详细步骤及代码示例,主要通过图像处理技术来区分远光灯和近光灯。整体思路图像预处理:包括读取图像、灰度化、去噪等操作,以提高后续处理的准确性。边缘检测:找出图像中的边缘信息,有助于定位灯光区域。特征提取:提取灯光区域的特征,如亮度、面积、形状等。模式识别:根据提取的特征,利用阈值或机器学习方法进行远近光灯的分类。代码实现%读取图像image=imrea
- GGUF 文件格式全解析
Just_Paranoid
技术流ClipLLMGGUF量化DeepSeek
在机器学习领域,模型的存储和部署一直是关键环节。随着大语言模型(LLM)的广泛应用,如何高效地存储和加载这些复杂的模型成为一个亟待解决的问题。GGUF(GGMLUniversalFormat)作为一种新兴的二进制文件格式,旨在解决传统GGML及其衍生格式(如GGMF和GGJT)的局限性,为模型推理提供更高效、更灵活的解决方案。官方介绍:https://github.com/ggml-org/ggm
- 深度、机器学习算法
yzx991013
机器学习算法人工智能
机器学习典型算法SVM(支持向量机):它通过寻找一个最优超平面来对数据进行分类。在二分类问题中,能找到一个平面(低维)或超平面(高维),使不同类别的数据点尽可能远地分布在超平面两侧。在小样本、非线性数据处理上有优势,常用于文本分类、图像识别等领域。决策树:以树形结构展示决策过程,从根节点开始,依据特征值逐步向下划分,直到叶子节点得出分类或回归结果。它易于理解和解释,可处理数值型和分类型数据,但容易
- GrandientBoostingClassifier函数介绍
浊酒南街
#机器学习算法GBDT
目录前言用法示例前言GradientBoostingClassifier是Scikit-learn库中的一个分类器,用于实现梯度提升决策树(GradientBoostingDecisionTrees,GBDT)算法。GBDT是一种强大的集成学习方法,能够通过逐步构建一系列简单的决策树(通常是浅树)来提高模型的预测性能。它在多个机器学习竞赛中表现出色,是用于分类和回归任务的流行选择。用法fromsk
- 人工智能在fpga的具体应用_FPGA创意人工智能研发 校企合作培养专业人才
墨墨猪
人工智能在fpga的具体应用
FPGA英特尔®FPGA与人工智能技术培训——成都信息工程大学站人工智能在21世纪初迎来以深度学习与大数据云计算为主导的第三次浪潮,在无人驾驶、医疗保健、工业等多个领域得到广泛应用。随着人工智能理论和技术日益成熟,FPGA在人工智能方面的应用也越来越多,特别对于需要分析大量数据的AI、大数据以及机器学习等研究领域。人工智能与FPGA的灵活应用,对人工智能专业人才培养提出了更高要求。英特尔®FPGA
- 正则化技术和模型融合等方法提高模型的泛化能力
小赖同学啊
人工智能人工智能
在机器学习和深度学习中,提高模型的泛化能力至关重要,正则化技术和模型融合是两种有效的手段,以下将详细介绍它们的原理、常见方法及代码示例。正则化技术原理正则化是通过在损失函数中添加一个正则化项,来限制模型的复杂度,防止模型过拟合训练数据,从而提高模型在未见过数据上的泛化能力。正则化项通常与模型的参数相关,通过惩罚过大的参数值,使模型更加平滑和简单。常见方法L1正则化(Lasso正则化)原理:在损失函
- 【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
猿享天开
人工智能基础知识学习线性代数人工智能学习矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读引言线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网络、图像处理、自然语言处理等领域的重要工具。本文将深入探讨矩阵的基本概念、性质及其运算,通过详细的数学公式、推导过程和代码示例,帮助读者更好地理解矩阵在AI中的应用。第一章:矩阵的基本概念1.1矩阵的定义
- 深度学习笔记线性代数方面,记录一些每日学习到的知识
肆——
人工智能深度学习python
记录一些每日学习到的新知识:torch:Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库jupyter:JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。只有一个轴的张量,形状只有一个元素torch.a
- R语言:探索数据的利器
ByteWhiz
r语言开发语言R语言
R语言:探索数据的利器R语言是一种强大而灵活的编程语言,尤其在数据科学和统计分析领域中广泛应用。作为一门开源语言,R语言拥有丰富的数据处理和可视化功能,同时支持大规模数据分析和机器学习。本文将介绍R语言的基本特性、常用的数据操作和可视化技巧,并提供相应的源代码示例。一、R语言的基本特性向量化操作:R语言鼓励使用向量化操作,即对整个向量或矩阵执行相同的操作,从而提高运算效率。例如,可以通过一条简单的
- DeepSeek颠覆传统教育:揭秘AI作业批改如何实现秒级反馈与精准提升
Coderabo
DeepSeekR1模型企业级应用人工智能
DeepSeek智能教育新突破:基于深度学习的作业批改与个性化反馈系统详解一、研究背景与意义在教育数字化转型的浪潮中,DeepSeek研发团队基于自研大语言模型,构建了新一代智能作业批改系统。该系统通过深度学习技术实现作业的自动化评分与个性化反馈,有效解决了传统教育中教师工作负荷大、反馈周期长、个性化不足等痛点。二、系统架构设计核心模块组成文本预处理模块深度学习评分引擎错误模式识别模块个性化反馈生
- 机器学习安全核心算法全景解析
金外飞176
网络空间安全机器学习安全算法
机器学习安全核心算法全景解析引言机器学习系统的脆弱性正成为安全攻防的新战场。从数据投毒到模型窃取,攻击者不断突破传统防御边界。本文系统性梳理ML安全关键技术图谱,重点解析12类核心算法及其防御价值。一、数据安全防护算法1.对抗样本防御算法名称核心思想2024年最新进展典型应用场景TRADES鲁棒性-准确性权衡优化Facebook提出自监督TRADES改进版自动驾驶目标检测JacobianSVD输入
- 零基础学习机器学习分类模型
可喜~可乐
机器学习机器学习学习分类人工智能数据挖掘
下面将带你通过一个简单的机器学习项目,使用Python实现一个常见的分类问题。我们将使用著名的Iris数据集,来构建一个机器学习模型,进行花卉品种的分类。整个过程会包含:原理介绍:机器学习的基本概念。数据加载和预处理:如何加载数据并进行必要的处理。模型训练和评估:使用经典的分类算法——逻辑回归。代码解释:逐步分析代码实现。拓展内容:如何优化和扩展该项目。1.原理介绍1.1机器学习基本概念机器学习(
- 数据挖掘中特征发现与特征提取的数学原理
调皮的芋头
数据挖掘人工智能AIGC计算机视觉
好的,我将深入研究数据挖掘中特征发现与特征提取的数学原理,涵盖统计学基础、特征工程的数学方法、以及在机器学习和深度学习中的应用。我会整理相关数学公式和理论,包括主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)、信息增益、互信息、方差分析等统计方法,并结合金融量化交易的实际应用,确保内容既有理论深度,又能落地实践。完成后,我会通知您!1.统计学基础:描述性统计、方差分析、相关性与
- 深入探索Spark MLlib:大数据时代的机器学习利器
concisedistinct
人工智能mllibspark-mlSparkMLlib大数据机器学习
随着大数据技术的迅猛发展,机器学习在各行各业的应用日益广泛。ApacheSpark作为大数据处理的利器,其内置的机器学习库MLlib(MachineLearningLibrary)提供了一套高效、易用的工具,用于处理和分析海量数据。本文将深入探讨SparkMLlib,介绍其核心功能和应用场景,并通过实例展示如何在实际项目中应用这些工具。一、SparkMLlib概述1.什么是SparkMLlib?S
- 【TVM教程】为 NVIDIA GPU 自动调度神经网络
HyperAI超神经
TVM神经网络人工智能深度学习TVMGPUNVIDIA语言模型
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用auto-scheduler为NVIDIAGPU调优整个神经网络。为自动调优神经网络,需要将网络划分为小的子图并独立调优。每个子图被视为
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 大数据模型:技术赋能,引领未来
大模型教程
人工智能AI大模型大模型语言模型
随着互联网、物联网、人工智能等技术的飞速发展,我们正身处一个数据爆炸的时代。数据,已经成为这个时代最为宝贵的资源之一。而如何挖掘和利用这些海量数据,为企业和社会创造价值,正是大数据模型所追求的目标。本文将从以下几个方面对大数据模型进行探讨:概述、技术原理、应用场景、挑战与发展趋势。一、概述大数据模型是一种基于数据挖掘和机器学习技术的分析方法,通过对海量数据进行处理和分析,挖掘出有价值的信息和知识,
- 数据采集技术:selenium/正则匹配/xpath/beautifulsoup爬虫实例
写代码的中青年
3天入门机器学习seleniumbeautifulsoup爬虫pythonxpath正则表达式
专栏介绍1.专栏面向零基础或基础较差的机器学习入门的读者朋友,旨在利用实际代码案例和通俗化文字说明,使读者朋友快速上手机器学习及其相关知识体系。2.专栏内容上包括数据采集、数据读写、数据预处理、分类\回归\聚类算法、可视化等技术。3.需要强调的是,专栏仅介绍主流、初阶知识,每一技术模块都是AI研究的细分领域,同更多技术有所交叠,此处不进行讨论和分享。数据采集技术:selenium/正则匹配/xpa
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- 从零开始玩转TensorFlow:小明的机器学习故事 4
山海青风
机器学习tensorflow人工智能
探索深度学习1场景故事:小明的灵感前不久,小明一直在用传统的机器学习方法(如线性回归、逻辑回归)来预测学校篮球比赛的胜负。虽然在朋友们看来已经很不错了,但小明发现一个问题:当比赛数据越来越多、球队的特征越来越复杂时,模型的准确率提升得很慢。有一天,小明在学校图书馆翻看杂志时,看到这样一句话:“就像人的大脑有上百亿神经元,神经网络能够学习复杂的信息映射,从而取得卓越的表现。”他瞬间来了灵感:“或许我
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- CSDN 博客文章:Genesis 安装指南与环境配置(Python 3.9+)
qq_27492797
python开发语言
引言随着人工智能和机器学习的蓬勃发展,各式各样的框架和工具如雨后春笋般涌现,为科研人员和开发者的创新之路提供强大支持。今天,我们聚焦于Genesis——一个在物理模拟、计算机图形学以及机器人领域展现出卓越潜力的先进平台。需要特别说明的是,目前Genesis项目中备受期待的对话式生成AI接口,当前仍处于概念展示阶段,仅存在于PPT之中,尚未对外开放,大家在关注其发展时需留意这一情况。本文将着重介绍如
- 《人工智能之高维数据降维算法:PCA与LDA深度剖析》
机器学习人工智能
在人工智能与机器学习蓬勃发展的当下,数据处理成为关键环节。高维数据在带来丰富信息的同时,也引入了计算复杂度高、过拟合风险增大以及数据稀疏性等难题。降维算法应运而生,它能将高维数据映射到低维空间,在减少维度的同时最大程度保留关键信息。主成分分析(PCA)与线性判别分析(LDA)作为两种常用的降维算法,在人工智能领域应用广泛。本文将深入探讨它们的原理。PCA:无监督的降维利器核心思想PCA基于最大方差
- 机器学习与深度学习在辣椒病虫害识别中的集成分析(实验室环境)
@@南风
农作物病害识别与分类深度学习机器学习神经网络
Abstract背景:辣椒是世界上最重要的高价值蔬菜作物之一。然而,虫害和疾病感染是辣椒种植的主要限制因素。这些疾病无法根除,但可以加以处理和监测,以减轻损害。因此,采用基于图像的自动识别系统将有助于快速识别辣椒病害。从图像中提取的特征对于开发这样一个精确的识别系统至关重要。结果:本研究将传统方法提取的辣椒病虫害特征与基于深度学习方法提取的特征进行了比较。***共采集辣椒叶片图像974张,由5种病
- BP算法的python实现 + 男女生分类器
乐宝不是酒
机器学习机器学习神经网络算法
模式识别课上学习了BP算法,并用BP算法实现了男女生分类器,之前因为时间匆忙只是简单记录了一下代码实现,现在重温一下发现代码中还是存在着一些问题,于是修改了一下Bug,也当做是复习吧。本文完整代码和数据集可以到这里:BP算法的python实现获得。BP算法是神经网络中十分经典的算法之一,要把它解释清楚实在需要很多时间,我只想重点讲一下基于BP算法的男女生分类器python实现,理论方面推荐看知乎大
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end