如图所示一个低通滤波器,列基尔霍夫方程,得到线性微分方程:
正是因为电感电容的存在,使得电路方程出现微分、积分项。而Laplace变换将微分方程转化为线性代数方程,成为快速求解微分方程的有力工具。
但是列出电路的微分方程之后再进行Laplace变换,求解之后再进行反变换仍然很复杂,聪明的电子工程师们便想到直接将电路中的电阻器 (R)、 电容器 (C) 和电感元件 (L)变换到s域。
R | L | C |
---|---|---|
R | sL | 1sC |
于是这个电路可以看作一个分压器
下面便引出系统的传输函数。
对于最简单的连续时间输入信号 x(t) , 和输出信号 y(t) 来说传递函数 H(s) 所反映的就是零状态条件下输入信号的拉普拉斯变换 X(s)={x(t)} 与输出信号的拉普拉斯变换 Y(s)={y(t)} 之间的线性映射关系:
而当系统为封闭回路的负反馈系统时:
由上图可得:
传递函数可以写成如下更加普遍的形式:
考虑一个由一个零点和两个极点组成的系统,在极坐标上表示为下图:
从上图中可以看出傅立叶变换和拉普拉斯变换的关系:
傅立叶变换为拉普拉斯变换在s平面虚轴 jω 上的求值。
由此,引出波特图。
从上图中可以看到,系统的传递函数 H(Jω) 其实就是将复平面中极点零点到虚轴上某一点的向量相乘除:
表示为幅度(取对数)和相位:
其中 α1,α2,α3 为图中向量的角度,由此便可以画出波特图。
下面以一个低通RC滤波器电路举例:
画出波特图如下:
下面介绍如何得到上图。
注意 :通常我们说波特图中遇到一个极点幅度开始以20dB/十倍频的斜率下降,在极点处相移为-45度;零点则是幅度上升,相移45度。
有人会疑问零点、极点不应该使得传递函数为零或者无穷大吗?
其实从s平面那幅图可以看出,其实我们所谓的在波特图中遇到的零点极点,并不是s平面中由传递函数公式求解出的零点极点。只有当零点或者极点真的出现在虚轴 jω 上时,该频率的输入才会导致零输出或者无穷大输出。
对于一个负反馈系统:
上式可以理解为,输入信号经过正向通路以及反馈回路一圈之后相移360度(环路增益的180度以及负反馈叠加点的180度),使得负反馈变成正反馈。此时如果环路增益的幅度大于1,则在输入信号上不断叠加一个放大了的信号,一个发散的数列不断叠加必然是无界的。
因此,避免振荡的放法就是在环路增益相移180度时,保证其幅度小于1。(收敛序列求和是有界的)
上图中定义了“增益交点GX“、“相位交点PX“、“相位裕度PM“等概念。(注意上图为环路增益的波特图)
如果将波特图绘制到极坐标系中,可以得到奈奎斯特图:
图中红色的线为传递函数曲线,其与单位圆的交点为GX点,与实轴的另一交点为PX点,并且能直观地看出相位裕度,增益裕度。
另外如果-1这个点不被传递函数曲线包围,则系统是稳定的。
此处参照sansen书中方法
定义开环增益
图中 AO 曲线与 Ac 曲线差就是环路增益,因此两条曲线(实线)交点对应的频率,也即 AO/Ac=1 ,就是环路增益降到单位增益的频率。这个点就是增益交点,可以从这个点看相位裕度。
(思考的切入点:让两条曲线相交,其实在数学上是让两个函数相等)
上图定义出增益带宽积,在闭环增益(Y/X)图中,为主极点的下降曲线与横轴的交点出的频率(单位增益)。
注意:
- GBW点其实是约等于的结果,但在对数图中可以看作不变。
- 另外,对于多极点系统,还是看第一个主极点延长线与实轴的交点,即 GBW=ω1⋅AO 。
- 反馈系数改变,闭环增益相位曲线 ∠YX(jω) 是会改变的;而环路增益相位曲线 ∠βH(jω) 不变。
- sansen书中看闭环增益转折点求PM,其实它对应的是开环增益的相位图,如下图,所以不要被迷惑。之所以这样,是因为双极点系统,总相移肯定是180度。
而180度相移点是第二个极点再往右,若f2出现在GBW点右侧,则系统相对比较稳定。
环路增益越大(图中两条曲线相差越宽),PM越小。当PM很小的时候,闭环增益曲线就会产生尖峰。
开环增益
因为 AO×ω1=GBW , 所以
其中 ζ 为阻尼因子, ωn 为谐振频率。
PM的求解需要解释一下:
因为 PM=180o+∠H(GX) , 而对于双极点系统,有
而对于 ω=GX 这个点,因为 GX>>ω1 所以第一级已经达到90度相移。另外
由信号系统知识可知:
如图,输入信号为
电路的传递函数为
所以输出信号(s域)为
其中
所以输出信号时域为
上式中,第一项为稳态响应,第二项是一个随时间衰减的量。这就解释了为什么我们要求系统的极点要在s平面的左半平面,这样系统才不会发散。
来自eetop网友的两个问题补充。
问题原文:
楼主的文章仔细看过,写的很好,特来学习,有2个问题向楼主请教下:
问题解释:
问题一我觉得是因为术语的定义给人们带来了误解。
我们在信号系统还有控制理论中学过的零极点,就是系统拉普拉斯变换后传输函数的分子分母解出来的根,这个根(零点极点)可以是整个s平面上任意一个点。但是很多书中讲传输函数,波特图时候并没有把这个零点,极点的概念讲清楚。
其实我们说系统遇到一个极点,波特图开始一个20dB/10倍频的下降,很多人下意识地认为波特图横坐标对应的那个频率值就是这个极点,这是错误的,这里应该是有一个s平面到bode图的映射的。
问题二是正弦函数拉普拉斯变化引入的数学问题,正弦函数傅立叶变换本来就是两个冲击函数,反过来虚轴上两个共轭极点的逆变换是稳态的正弦波也就不足为奇。
这个可以参考知乎上这个解答如何理解正弦函数的傅立叶变换?
而且两个共轭极点构成一个二阶系统,二阶系统与一阶系统的分析方法有所不同。更高阶的系统最低能分解为多个一阶与二阶系统来分析。