pandas 快速处理 date_time 日期格式

当数据很多,且日期格式不标准时的时候,如果pandas.to_datetime 函数使用不当,会使得处理时间变得很长,提升速度的关键在于format的使用。下面举例进行说明:

示例数据:

date 格式:02.01.2013 即 日.月.年
数据量:3000000

transcation.head()
---------------------------------------------
          date  date_block_num  shop_id  item_id  item_price  item_cnt_day
0  02.01.2013               0       59    22154      999.00           1.0
1  03.01.2013               0       25     2552      899.00           1.0
2  05.01.2013               0       25     2552      899.00          -1.0
3  06.01.2013               0       25     2554     1709.05           1.0
4  15.01.2013               0       25     2555     1099.00           1.0

处理方式一:

transactions['date_formatted']=pd.to_datetime(transactions['date'])

处理时间: 10min

处理方式二:

transactions['date_formatted']=pd.to_datetime(transactions['date'], format='%d.%m.%Y')

处理时间:10s

附录:format相关

代码 说明
%Y 4位数的年
%y 2位数的年
%m 2位数的月[01,12]
%d 2位数的日[01,31]
%H 时(24小时制)[00,23]
%l 时(12小时制)[01,12]
%M 2位数的分[00,59]
%S 秒[00,61]有闰秒的存在
%w 用整数表示的星期几[0(星期天),6]
%F %Y-%m-%d简写形式例如,2017-06-27
%D %m/%d/%y简写形式

你可能感兴趣的:(大数据)