PyTorch实现GoogLeNet(InceptionNet)

import numpy as np
import torch
from torch import nn
from torch.autograd import Variable

定义一个卷积加batchnorm,以及relu激活函数作为基本结构

def conv_relu(in_channel,out_channel, kernel, stride=1, padding=0):
    layer = nn.Sequential(
        nn.Conv2d(in_channel, out_channel, kernel, stride, padding),
        nn.BatchNorm2d(out_channel, eps=1e-3),
        nn.ReLU(True)
    )
    return layer

定义inception模块

class inception(nn.Module):
    def __init__(self, in_channel, out1_1,out2_1, out2_3, out3_1, out3_5,out4_1):
        super(inception, self).__init__()
        
        # 定义inception模块第一条线路
        self.branch1x1 = conv_relu(in_channel,out1_1, 1)
        
        # 定义inception模块第二条线路
        self.branch3x3 = nn.Sequential(
            conv_relu(in_channel, out2_1, 1),
            conv_relu(out2_1, out2_3, 3, padding=1)
        )
        
        #定义inception模块的第三条线路
        self.branch5x5 = nn.Sequential(
            conv_relu(in_channel, out3_1, 1),
            conv_relu(out3_1, out3_5, 5, padding=2)
        )
        
        # 定义inception模块第四条线路
        
        self.branch_pool = nn.Sequential(
            nn.MaxPool2d(3, stride=1, padding=1),
            conv_relu(in_channel, out4_1,1)
        )
        
    def forward(self,x):
        f1 = self.branch1x1(x)
        f2 = self.branch3x3(x)
        f3 = self.branch5x5(x)
        f4 = self.branch_pool(x)
        
        output = torch.cat((f1, f2, f3, f4), dim=1)
        return output

测试一个inception模块输出结果

test_net = inception(3, 64, 48, 64, 64, 96, 32)
test_x = Variable(torch.zeros(1, 3, 96, 96))
print('input shape : {} x {} x {}'.format(test_x.shape[1], test_x.shape[2],test_x.shape[3]))
test_y = test_net(test_x)
print('output shape : {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3]))

输出:

input shape : 3 x 96 x 96
output shape : 256 x 96 x 96

定义GoogLeNet,将多个inception模块堆叠。此处定义简洁版的GoogLeNet,仅仅有一个输出。原网络模型为了解决梯度消失问题,有多个输出。

class googlenet(nn.Module):
    def __init__(self, in_channel, num_classes, verbose=False):
        super(googlenet, self).__init__()
        self.verbose = verbose

        self.block1 = nn.Sequential(
            conv_relu(in_channel, out_channel=64, kernel=7, stride=2, padding=3),
            nn.MaxPool2d(3, 2)
        )

        self.block2 = nn.Sequential(
            conv_relu(64, 64, kernel=1),
            conv_relu(64, 192, kernel=3, padding=1),
            nn.MaxPool2d(3, 2)
        )

        self.block3 = nn.Sequential(
            inception(192, 64, 96, 128, 16, 32, 32),
            inception(256, 128, 128, 192, 32, 96, 64),
            nn.MaxPool2d(3, 2)
        )

        self.block4 = nn.Sequential(
            inception(480, 192, 96, 208, 16, 48, 64),
            inception(512, 160, 112, 224, 24, 64, 64),
            inception(512, 128, 128, 256, 24, 64, 64),
            inception(512, 112, 144, 288, 32, 64, 64),
            inception(528, 256, 160, 320, 32, 128, 128),
            nn.MaxPool2d(3, 2)
        )

        self.block5 = nn.Sequential(
            inception(832, 256, 160, 320, 32, 128, 128),
            inception(832, 384, 182, 384, 48, 128, 128),
            nn.AvgPool2d(2)
        )

        self.classifier = nn.Linear(1024, num_classes)
    
    def forward(self, x):
        x = self.block1(x)
        if self.verbose:
            print('block 1 output: {}'.format(x.shape))
        x = self.block2(x)
        if self.verbose:
            print('block 2 output: {}'.format(x.shape))
        x = self.block3(x)
        if self.verbose:
            print('block 3 output: {}'.format(x.shape))
        x = self.block4(x)
        if self.verbose:
            print('block 4 output: {}'.format(x.shape))
        x = self.block5(x)
        if self.verbose:
            print('block 5 output: {}'.format(x.shape))
        x = x.view(x.shape[0], -1)
        x = self.classifier(x)
        return x
test_net = googlenet(3, 10, True)
test_x = Variable(torch.zeros(1, 3, 96, 96))
test_y = test_net(test_x)
print('output: {}'.format(test_y.shape))

输出:

block 1 output: torch.Size([1, 64, 23, 23])
block 2 output: torch.Size([1, 192, 11, 11])
block 3 output: torch.Size([1, 480, 5, 5])
block 4 output: torch.Size([1, 832, 2, 2])
block 5 output: torch.Size([1, 1024, 1, 1])
output: torch.Size([1, 10])

你可能感兴趣的:(PyTorch)