【Caffe Windows】添加UpsampleLayer BNLayer以支持SegNet网络结构

承接图像分类、检测、分割、生成相关项目,私信。

论文: 《SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation》

SegNet:WebDemo

github: alexgkendall/caffe-segnet

github: TimoSaemann/caffe-segnet-cudnn5(推荐)

**

一 添加新的caffe layer

**
需要添加的层有两个 UpsampleLayer 和 BNLayer.
Upsample 是对图像进行放大使用的,功能可类比于 Deconv层。
BN 就是BatchNorm ,caffe官方也有实现,这里最好用作者的,省得再去改网络参数。
这里给出两个层的cpp hpp cu 文件。
除此之外,还要修改caffe.proto文件,声明这两个层。

bn_layer

//bn_layer.hpp
#ifndef CAFFE_BN_LAYER_HPP_
#define CAFFE_BN_LAYER_HPP_

#include 
#include 

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/filler.hpp"

/**
* @brief Batch Normalization per-channel with scale & shift linear transform.
*
*/
namespace caffe {

template 
class BNLayer : public Layer {
 public:
  explicit BNLayer(const LayerParameter& param)
      : Layer(param) {}
  virtual void LayerSetUp(const vector*>& bottom,
      const vector*>& top);

  virtual void Reshape(const vector*>& bottom,
      const vector*>& top);

  virtual inline const char* type() const { return "BN"; }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int MinTopBlobs() const { return 1; }
  // if the BNMode is "LEARN" mamximum 3 top blobs are available
  virtual inline int MaxTopBlobs() const {
    return (this->layer_param_.bn_param().bn_mode() ==
            BNParameter_BNMode_LEARN) ? 3 : 1;
  }

 protected:
  virtual void Forward_cpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Forward_gpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Backward_cpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);
  virtual void Backward_gpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);

  // spatial mean & variance
  Blob spatial_mean_, spatial_variance_;
  // batch mean & variance
  Blob batch_mean_, batch_variance_;
  // buffer blob
  Blob buffer_blob_;

  Blob x_norm_;
  // x_sum_multiplier is used to carry out sum using BLAS
  Blob spatial_sum_multiplier_, batch_sum_multiplier_;

  // dimension
  int N_;
  int C_;
  int H_;
  int W_;
  // eps
  Dtype var_eps_;
};

}  // namespace caffe

#endif  

//=========================================================================

//bn_layer.cpp
#include 
#include 

#include "caffe/layers/bn_layer.hpp"

namespace caffe {
  template 
  void BNLayer::Reshape(const vector*>& bottom,
      const vector*>& top) {
    top[0]->Reshape(bottom[0]->num(), bottom[0]->channels(),
        bottom[0]->height(), bottom[0]->width());
    if (top.size() > 1) {
        // top blob for batch mean
        top[1]->Reshape(1, C_, 1, 1);
    }
    if (top.size() > 2) {
        // top blob for batch variance
        top[2]->Reshape(1, C_, 1, 1);
    }

    x_norm_.Reshape(bottom[0]->num(), bottom[0]->channels(),
        bottom[0]->height(), bottom[0]->width());

    // mean
    spatial_mean_.Reshape(N_, C_, 1, 1);
    batch_mean_.Reshape(1, C_, 1, 1);
    // variance
    spatial_variance_.Reshape(N_, C_, 1, 1);
    batch_variance_.Reshape(1, C_, 1, 1);
    // buffer blob
    buffer_blob_.Reshape(N_, C_, H_, W_);

    // fill spatial multiplier
    spatial_sum_multiplier_.Reshape(1, 1, H_, W_);
    Dtype* spatial_multipl_data = spatial_sum_multiplier_.mutable_cpu_data();
    caffe_set(spatial_sum_multiplier_.count(), Dtype(1),
        spatial_multipl_data);
    caffe_set(spatial_sum_multiplier_.count(), Dtype(0),
        spatial_sum_multiplier_.mutable_cpu_diff());
    // fill batch multiplier
    batch_sum_multiplier_.Reshape(N_, 1, 1, 1);
    Dtype* batch_multiplier_data = batch_sum_multiplier_.mutable_cpu_data();
    caffe_set(batch_sum_multiplier_.count(), Dtype(1),
        batch_multiplier_data);
    caffe_set(batch_sum_multiplier_.count(), Dtype(0),
        batch_sum_multiplier_.mutable_cpu_diff());
  }
  template 
  void BNLayer::LayerSetUp(const vector*>& bottom,
      const vector*>& top) {
    // Figure out the dimensions
    N_ = bottom[0]->num();
    C_ = bottom[0]->channels();
    H_ = bottom[0]->height();
    W_ = bottom[0]->width();
    var_eps_ = 1e-9;

    // Check if we need to set up the weights
    if (this->blobs_.size() > 0) {
      LOG(INFO) << "Skipping parameter initialization";
    } else {
      this->blobs_.resize(2);

      // fill scale with scale_filler
      this->blobs_[0].reset(new Blob(1, C_, 1, 1));
      shared_ptr > scale_filler(GetFiller(
          this->layer_param_.bn_param().scale_filler()));
      scale_filler->Fill(this->blobs_[0].get());

      // fill shift with shift_filler
      this->blobs_[1].reset(new Blob(1, C_, 1, 1));
      shared_ptr > shift_filler(GetFiller(
          this->layer_param_.bn_param().shift_filler()));
      shift_filler->Fill(this->blobs_[1].get());
    }  // parameter initialization
    this->param_propagate_down_.resize(this->blobs_.size(), true);
  }

  template 
  void BNLayer::Forward_cpu(const vector*>& bottom,
      const vector*>& top) {
    const Dtype* bottom_data = bottom[0]->cpu_data();
    Dtype* top_data = top[0]->mutable_cpu_data();
    const Dtype* const_top_data = top[0]->cpu_data();

    const Dtype* scale_data = this->blobs_[0]->cpu_data();
    const Dtype* shift_data = this->blobs_[1]->cpu_data();

    switch (this->layer_param_.bn_param().bn_mode()) {
    case BNParameter_BNMode_LEARN:
      // put the squares of bottom into buffer_blob_
      caffe_powx(bottom[0]->count(), bottom_data, Dtype(2),
          buffer_blob_.mutable_cpu_data());

      // computes variance using var(X) = E(X^2) - (EX)^2
      // EX across spatial
      caffe_cpu_gemv(CblasNoTrans, N_ * C_, H_ * W_,
          Dtype(1. / (H_ * W_)), bottom_data,
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          spatial_mean_.mutable_cpu_data());
      // EX across batch
      caffe_cpu_gemv(CblasTrans, N_, C_, Dtype(1. / N_),
          spatial_mean_.cpu_data(),
          batch_sum_multiplier_.cpu_data(), Dtype(0),
          batch_mean_.mutable_cpu_data());

      // E(X^2) across spatial
      caffe_cpu_gemv(CblasNoTrans, N_ * C_, H_ * W_,
          Dtype(1. / (H_ * W_)), buffer_blob_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          spatial_variance_.mutable_cpu_data());
      // E(X^2) across batch
      caffe_cpu_gemv(CblasTrans, N_, C_, Dtype(1. / N_),
          spatial_variance_.cpu_data(),
          batch_sum_multiplier_.cpu_data(), Dtype(0),
          batch_variance_.mutable_cpu_data());

      caffe_powx(batch_mean_.count(), batch_mean_.cpu_data(), Dtype(2),
          buffer_blob_.mutable_cpu_data());  // (EX)^2
      caffe_sub(batch_mean_.count(), batch_variance_.cpu_data(),
          buffer_blob_.cpu_data(),
          batch_variance_.mutable_cpu_data());  // variance

      // save top[1] (batch_mean) and top[2] (batch_variance)
      if (top.size() > 1) {
          caffe_copy(batch_mean_.count(), batch_mean_.cpu_data(),
              top[1]->mutable_cpu_data());
      }
      if (top.size() > 2) {
          caffe_copy(batch_variance_.count(), batch_variance_.cpu_data(),
              top[2]->mutable_cpu_data());
      }

      // do mean and variance normalization
      // subtract mean
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_,
          C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(),
          batch_mean_.cpu_data(), Dtype(0),
          spatial_mean_.mutable_cpu_data());

      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(-1),
          spatial_mean_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());

      caffe_add(buffer_blob_.count(), bottom_data,
          buffer_blob_.cpu_data(), top_data);

      // normalize variance
      caffe_add_scalar(batch_variance_.count(), var_eps_,
        batch_variance_.mutable_cpu_data());
      caffe_powx(batch_variance_.count(),
          batch_variance_.cpu_data(), Dtype(0.5),
          batch_variance_.mutable_cpu_data());

      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_,
          C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(),
          batch_variance_.cpu_data(), Dtype(0),
          spatial_variance_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans,
          N_ * C_, H_ * W_, 1, Dtype(1),
          spatial_variance_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());

      caffe_div(buffer_blob_.count(), const_top_data,
          buffer_blob_.cpu_data(), top_data);

      // Saving x_norm
      caffe_copy(buffer_blob_.count(), const_top_data,
          x_norm_.mutable_cpu_data());
      // scale
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(), scale_data, Dtype(0),
          spatial_variance_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());
      caffe_mul(buffer_blob_.count(), top_data,
          buffer_blob_.cpu_data(), top_data);

      // shift
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(), shift_data, Dtype(0),
          spatial_mean_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans,
          N_ * C_, H_ * W_, 1, Dtype(1),
          spatial_mean_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());
      caffe_add(buffer_blob_.count(), const_top_data,
          buffer_blob_.cpu_data(), top_data);
      break;
    case BNParameter_BNMode_INFERENCE:
      // scale
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(), scale_data, Dtype(0),
          spatial_variance_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());
      caffe_mul(buffer_blob_.count(), bottom_data,
          buffer_blob_.cpu_data(), top_data);

      // shift
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(), shift_data, Dtype(0),
          spatial_mean_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans,
          N_ * C_, H_ * W_, 1, Dtype(1),
          spatial_mean_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());
      caffe_add(buffer_blob_.count(), const_top_data,
          buffer_blob_.cpu_data(), top_data);
      break;
    default:
      LOG(FATAL) << "Unknown BN mode.";
    } 
  }

  template 
  void BNLayer::Backward_cpu(const vector*>& top,
      const vector& propagate_down,
      const vector*>& bottom) {
    const Dtype* top_diff = top[0]->cpu_diff();
    const Dtype* bottom_data = bottom[0]->cpu_data();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();

    Dtype* scale_diff = this->blobs_[0]->mutable_cpu_diff();
    Dtype* shift_diff = this->blobs_[1]->mutable_cpu_diff();
    const Dtype* scale_data = this->blobs_[0]->cpu_data();

    switch (this->layer_param_.bn_param().bn_mode()) {
    case BNParameter_BNMode_LEARN:
      // Propagate layer to parameters
      // gradient w.r.t. scale
      caffe_mul(buffer_blob_.count(), x_norm_.cpu_data(),
          top_diff, buffer_blob_.mutable_cpu_data());
      // EX across spatial
      caffe_cpu_gemv(CblasNoTrans, N_ * C_,
          H_ * W_, Dtype(1), buffer_blob_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          spatial_variance_.mutable_cpu_diff());
      // EX across batch
      caffe_cpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_variance_.cpu_diff(),
          batch_sum_multiplier_.cpu_data(), Dtype(0), scale_diff);

      // gradient w.r.t. shift
      // EX across spatial
      caffe_cpu_gemv(CblasNoTrans, N_ * C_,
          H_ * W_, Dtype(1), top_diff,
          spatial_sum_multiplier_.cpu_data(),
          Dtype(0), spatial_mean_.mutable_cpu_diff());
      // EX across batch
      caffe_cpu_gemv(CblasTrans, N_, C_,
          Dtype(1), spatial_mean_.cpu_diff(),
          batch_sum_multiplier_.cpu_data(),
          Dtype(0), shift_diff);

      // Propagate down

      // put scale * top_diff to buffer_blob_
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(), scale_data, Dtype(0),
          spatial_variance_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());
      caffe_mul(buffer_blob_.count(), top_diff, buffer_blob_.cpu_data(),
          buffer_blob_.mutable_cpu_data());

      // use new top diff for computation
      caffe_mul(buffer_blob_.count(),  x_norm_.cpu_data(),
          buffer_blob_.cpu_data(), bottom_diff);
      // EX across spatial
      caffe_cpu_gemv(CblasNoTrans, N_ * C_, H_ * W_,
          Dtype(1), bottom_diff,
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          spatial_mean_.mutable_cpu_data());
      // EX across batch
      caffe_cpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_mean_.cpu_data(),
          batch_sum_multiplier_.cpu_data(), Dtype(0),
          batch_mean_.mutable_cpu_data());

      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans,
          N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(),
          batch_mean_.cpu_data(), Dtype(0),
          spatial_mean_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_mean_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          bottom_diff);

      caffe_mul(buffer_blob_.count(),
          x_norm_.cpu_data(), bottom_diff, bottom_diff);

      // EX across spatial
      caffe_cpu_gemv(CblasNoTrans, N_ * C_,
          H_ * W_, Dtype(1), buffer_blob_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          spatial_mean_.mutable_cpu_data());
      // EX across batch
      caffe_cpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_mean_.cpu_data(),
          batch_sum_multiplier_.cpu_data(), Dtype(0),
          batch_mean_.mutable_cpu_data());

      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans,
          N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(),
          batch_mean_.cpu_data(), Dtype(0),
          spatial_mean_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans,
          N_ * C_, H_ * W_, 1, Dtype(1),
          spatial_mean_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(1), bottom_diff);

      caffe_cpu_axpby(buffer_blob_.count(), Dtype(1),
          buffer_blob_.cpu_data(), Dtype(-1. / (N_ * H_ * W_)),
          bottom_diff);

      // put the squares of bottom into buffer_blob_
      caffe_powx(buffer_blob_.count(), bottom_data, Dtype(2),
          buffer_blob_.mutable_cpu_data());

      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans,
          N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(),
          batch_variance_.cpu_data(), Dtype(0),
          spatial_variance_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans,
          N_ * C_, H_ * W_, 1, Dtype(1),
          spatial_variance_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());

      caffe_div(buffer_blob_.count(), bottom_diff,
          buffer_blob_.cpu_data(), bottom_diff);
      break;
    case BNParameter_BNMode_INFERENCE:
      // Propagate layer to parameters
      // gradient w.r.t. scale
      caffe_mul(buffer_blob_.count(), bottom_data,
          top_diff, buffer_blob_.mutable_cpu_data());
      // EX across spatial
      caffe_cpu_gemv(CblasNoTrans, N_ * C_,
          H_ * W_, Dtype(1), buffer_blob_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          spatial_variance_.mutable_cpu_diff());
      // EX across batch
      caffe_cpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_variance_.cpu_diff(),
          batch_sum_multiplier_.cpu_data(), Dtype(0), scale_diff);

      // gradient w.r.t. shift
      // EX across spatial
      caffe_cpu_gemv(CblasNoTrans, N_ * C_,
          H_ * W_, Dtype(1), top_diff,
          spatial_sum_multiplier_.cpu_data(),
          Dtype(0), spatial_mean_.mutable_cpu_diff());
      // EX across batch
      caffe_cpu_gemv(CblasTrans, N_, C_,
          Dtype(1), spatial_mean_.cpu_diff(),
          batch_sum_multiplier_.cpu_data(),
          Dtype(0), shift_diff);

      // Propagate down
      // put scale * top_diff to buffer_blob_
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.cpu_data(), scale_data, Dtype(0),
          spatial_variance_.mutable_cpu_data());
      caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.cpu_data(),
          spatial_sum_multiplier_.cpu_data(), Dtype(0),
          buffer_blob_.mutable_cpu_data());
      caffe_mul(buffer_blob_.count(), top_diff, buffer_blob_.cpu_data(),
          bottom_diff);
      break;
    default:
      LOG(FATAL) << "Unknown BN mode.";
    }
  }
#ifdef CPU_ONLY
STUB_GPU(BNLayer);
#endif

  INSTANTIATE_CLASS(BNLayer);
  REGISTER_LAYER_CLASS(BN);
}  // namespace caffe

//=========================================================================

//bn_layer.cu
#include 
#include 

#include "caffe/layers/bn_layer.hpp"

namespace caffe {
  template 
  void BNLayer::Forward_gpu(const vector*>& bottom,
      const vector*>& top) {
    const Dtype* bottom_data = bottom[0]->gpu_data();
    const Dtype* const_top_data = top[0]->gpu_data();
    Dtype* top_data = top[0]->mutable_gpu_data();
    Dtype* spatial_mean_data = spatial_mean_.mutable_gpu_data();
    Dtype* buffer_data = buffer_blob_.mutable_gpu_data();
    const Dtype* const_buffer_data = buffer_blob_.gpu_data();

    switch (this->layer_param_.bn_param().bn_mode()) {
    case BNParameter_BNMode_LEARN:
      // put the squares of bottom into buffer_blob_
      caffe_gpu_powx(bottom[0]->count(), bottom_data, Dtype(2),
          buffer_blob_.mutable_gpu_data());

      // computes variance using var(X) = E(X^2) - (EX)^2
      // EX across spatial
      caffe_gpu_gemv(CblasNoTrans, N_ * C_, H_ * W_,
          Dtype(1. / (H_ * W_)),
          bottom_data, spatial_sum_multiplier_.gpu_data(),
          Dtype(0), spatial_mean_data);
      // EX across batch
      caffe_gpu_gemv(CblasTrans, N_, C_, Dtype(1. / N_),
          spatial_mean_.gpu_data(),
          batch_sum_multiplier_.gpu_data(), Dtype(0),
          batch_mean_.mutable_gpu_data());

      // E(X^2) across spatial
      caffe_gpu_gemv(CblasNoTrans, N_ * C_, H_ * W_,
          Dtype(1. / (H_ * W_)), buffer_data,
          spatial_sum_multiplier_.gpu_data(), Dtype(0),
          spatial_variance_.mutable_gpu_data());
      // E(X^2) across batch
      caffe_gpu_gemv(CblasTrans, N_, C_, Dtype(1. / N_),
          spatial_variance_.gpu_data(),
          batch_sum_multiplier_.gpu_data(), Dtype(0),
          batch_variance_.mutable_gpu_data());

      caffe_gpu_powx(batch_mean_.count(), batch_mean_.gpu_data(),
          Dtype(2), buffer_blob_.mutable_gpu_data());  // (EX)^2
      caffe_gpu_sub(batch_mean_.count(), batch_variance_.gpu_data(),
          buffer_data, batch_variance_.mutable_gpu_data());  // variance

      // save top[1] (batch_mean) and top[2] (batch_variance)
      if (top.size() > 1) {
          caffe_copy(batch_mean_.count(), batch_mean_.gpu_data(),
              top[1]->mutable_gpu_data());
      }
      if (top.size() > 2) {
          caffe_copy(batch_variance_.count(), batch_variance_.gpu_data(),
              top[2]->mutable_gpu_data());
      }

      // do mean and variance normalization
      // subtract mean
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(), batch_mean_.gpu_data(), Dtype(0),
          spatial_mean_data);
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_, H_ * W_,
          1, -Dtype(1),
          spatial_mean_.gpu_data(), spatial_sum_multiplier_.gpu_data(), Dtype(0),
          buffer_blob_.mutable_gpu_data());

      caffe_gpu_add(buffer_blob_.count(), bottom_data, buffer_data, top_data);

      // normalize variance
      caffe_gpu_add_scalar(batch_variance_.count(), var_eps_,
          batch_variance_.mutable_gpu_data());
      caffe_gpu_powx(batch_variance_.count(), batch_variance_.gpu_data(),
          Dtype(0.5), batch_variance_.mutable_gpu_data());

      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(), batch_variance_.gpu_data(), Dtype(0),
          spatial_variance_.mutable_gpu_data());
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.gpu_data(), spatial_sum_multiplier_.gpu_data(),
          Dtype(0), buffer_blob_.mutable_gpu_data());

      caffe_gpu_div(buffer_blob_.count(), top_data, buffer_data, top_data);

      // Saving x_norm
      caffe_copy(top[0]->count(), const_top_data, x_norm_.mutable_gpu_data());

      // scale
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(), this->blobs_[0]->gpu_data(),
          Dtype(0), spatial_variance_.mutable_gpu_data());
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.gpu_data(), spatial_sum_multiplier_.gpu_data(),
          Dtype(0), buffer_blob_.mutable_gpu_data());

      caffe_gpu_mul(buffer_blob_.count(), top_data, buffer_data, top_data);

      // shift
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(),
          this->blobs_[1]->gpu_data(), Dtype(0),
          spatial_mean_data);
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_, H_ * W_, 1,
          Dtype(1),
          spatial_mean_.gpu_data(), spatial_sum_multiplier_.gpu_data(), Dtype(0),
          buffer_blob_.mutable_gpu_data());
      caffe_gpu_add(buffer_blob_.count(), top_data, buffer_data, top_data);
      break;
    case BNParameter_BNMode_INFERENCE:
      // scale
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(), this->blobs_[0]->gpu_data(),
          Dtype(0), spatial_variance_.mutable_gpu_data());
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.gpu_data(), spatial_sum_multiplier_.gpu_data(),
          Dtype(0), buffer_blob_.mutable_gpu_data());

      caffe_gpu_mul(buffer_blob_.count(), bottom_data, buffer_data, top_data);

      // shift
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(),
          this->blobs_[1]->gpu_data(), Dtype(0),
          spatial_mean_data);
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_, H_ * W_, 1,
          Dtype(1),
          spatial_mean_.gpu_data(), spatial_sum_multiplier_.gpu_data(), Dtype(0),
          buffer_blob_.mutable_gpu_data());
      caffe_gpu_add(buffer_blob_.count(), top_data, buffer_data, top_data);
      break;
    default:
      LOG(FATAL) << "Unknown BN mode.";
    }
  }

  template 
  void BNLayer::Backward_gpu(const vector*>& top,
      const vector& propagate_down,
      const vector*>& bottom) {
    const Dtype* top_diff = top[0]->gpu_diff();
    const Dtype* top_data = top[0]->gpu_data();
    const Dtype* bottom_data = bottom[0]->gpu_data();
    Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
    const Dtype* const_bottom_diff = bottom[0]->gpu_diff();
    Dtype* spatial_mean_data = spatial_mean_.mutable_gpu_data();
    Dtype* buffer_data = buffer_blob_.mutable_gpu_data();
    const Dtype* const_buffer_data = buffer_blob_.gpu_data();

    switch (this->layer_param_.bn_param().bn_mode()) {
    case BNParameter_BNMode_LEARN:
      // Propage to layer params
      // gradient w.r.t. scale
      caffe_gpu_mul(buffer_blob_.count(), x_norm_.gpu_data(),
          top_diff, buffer_blob_.mutable_gpu_data());
      // EX across spatial
      caffe_gpu_gemv(CblasNoTrans, N_ * C_, H_ * W_, Dtype(1),
          buffer_data, spatial_sum_multiplier_.gpu_data(), Dtype(0),
      spatial_variance_.mutable_gpu_data());
      // EX across batch
      caffe_gpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_variance_.gpu_data(),
          batch_sum_multiplier_.gpu_data(), Dtype(0),
          this->blobs_[0]->mutable_gpu_diff());

      // gradient w.r.t. shift
      // EX across spatial
      caffe_gpu_gemv(CblasNoTrans, N_ * C_, H_ * W_, Dtype(1),
          top_diff, spatial_sum_multiplier_.gpu_data(),
          Dtype(0), spatial_mean_data);
      // EX across batch
      caffe_gpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_mean_.gpu_data(),
          batch_sum_multiplier_.gpu_data(), Dtype(0),
          this->blobs_[1]->mutable_gpu_diff());

      // Propagate down
      // scale top diff
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(), this->blobs_[0]->gpu_data(),
          Dtype(0), spatial_variance_.mutable_gpu_data());
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.gpu_data(), spatial_sum_multiplier_.gpu_data(),
          Dtype(0),
          buffer_blob_.mutable_gpu_data());
      caffe_gpu_mul(buffer_blob_.count(), top_diff, buffer_data,
          buffer_blob_.mutable_gpu_data());

      // use new top diff for computation
      caffe_gpu_mul(buffer_blob_.count(), x_norm_.gpu_data(),
          buffer_data, bottom_diff);
      // EX across spatial
      caffe_gpu_gemv(CblasNoTrans, N_ * C_, H_ * W_,
          Dtype(1), bottom_diff,
          spatial_sum_multiplier_.gpu_data(), Dtype(0), spatial_mean_data);
      // EX across batch
      caffe_gpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_mean_.gpu_data(),
          batch_sum_multiplier_.gpu_data(), Dtype(0),
          batch_mean_.mutable_gpu_data());

      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(),
          batch_mean_.gpu_data(), Dtype(0),
          spatial_mean_data);
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1), spatial_mean_.gpu_data(),
          spatial_sum_multiplier_.gpu_data(), Dtype(0),
          bottom_diff);

      caffe_gpu_mul(buffer_blob_.count(), x_norm_.gpu_data(),
          bottom_diff, bottom_diff);

      // EX across spatial
      caffe_gpu_gemv(CblasNoTrans, N_ * C_, H_ * W_, Dtype(1),
          buffer_data, spatial_sum_multiplier_.gpu_data(),
          Dtype(0), spatial_mean_data);

      // EX across batch
      caffe_gpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_mean_.gpu_data(),
          batch_sum_multiplier_.gpu_data(), Dtype(0),
          batch_mean_.mutable_gpu_data());

      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_,
          C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(),
          batch_mean_.gpu_data(), Dtype(0),
          spatial_mean_data);
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_mean_.gpu_data(), spatial_sum_multiplier_.gpu_data(),
          Dtype(1),
          bottom_diff);

      caffe_gpu_axpby(buffer_blob_.count(), Dtype(1), buffer_data,
          Dtype(-1. / (N_ * H_ * W_)),
          bottom_diff);

      // put the squares of bottom into buffer_blob_
      caffe_gpu_powx(buffer_blob_.count(), bottom_data, Dtype(2),
          buffer_blob_.mutable_gpu_data());

      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(), batch_variance_.gpu_data(), Dtype(0),
          spatial_variance_.mutable_gpu_data());
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.gpu_data(), spatial_sum_multiplier_.gpu_data(),
          Dtype(0),
          buffer_blob_.mutable_gpu_data());

      caffe_gpu_div(buffer_blob_.count(), const_bottom_diff,
          const_buffer_data, bottom_diff);
      break;
    case BNParameter_BNMode_INFERENCE:
      // Propage to layer params
      // gradient w.r.t. scale
      caffe_gpu_mul(buffer_blob_.count(), bottom_data,
          top_diff, buffer_blob_.mutable_gpu_data());
      // EX across spatial
      caffe_gpu_gemv(CblasNoTrans, N_ * C_, H_ * W_, Dtype(1),
          buffer_data, spatial_sum_multiplier_.gpu_data(), Dtype(0),
      spatial_variance_.mutable_gpu_data());
      // EX across batch
      caffe_gpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_variance_.gpu_data(),
          batch_sum_multiplier_.gpu_data(), Dtype(0),
          this->blobs_[0]->mutable_gpu_diff());

      // gradient w.r.t. shift
      // EX across spatial
      caffe_gpu_gemv(CblasNoTrans, N_ * C_, H_ * W_, Dtype(1),
          top_diff, spatial_sum_multiplier_.gpu_data(),
          Dtype(0), spatial_mean_data);
      // EX across batch
      caffe_gpu_gemv(CblasTrans, N_, C_, Dtype(1),
          spatial_mean_.gpu_data(),
          batch_sum_multiplier_.gpu_data(), Dtype(0),
          this->blobs_[1]->mutable_gpu_diff());

      // Propagate down
      // scale top diff
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_, C_, 1, Dtype(1),
          batch_sum_multiplier_.gpu_data(), this->blobs_[0]->gpu_data(),
          Dtype(0), spatial_variance_.mutable_gpu_data());
      caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, N_ * C_,
          H_ * W_, 1, Dtype(1),
          spatial_variance_.gpu_data(), spatial_sum_multiplier_.gpu_data(),
          Dtype(0),
          buffer_blob_.mutable_gpu_data());
      caffe_gpu_mul(buffer_blob_.count(), top_diff, buffer_data,
          bottom_diff);
      break;
    default:
      LOG(FATAL) << "Unknown BN mode.";
    }
  }

  INSTANTIATE_LAYER_GPU_FUNCS(BNLayer);
}  // namespace caffe

==========================================================================

UpsampleLayer

//upsamplelayer.hpp
#ifndef CAFFE_UPSAMPLE_LAYER_HPP_
#define CAFFE_UPSAMPLE_LAYER_HPP_

#include 

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

//#include "caffe/layers/upsample_layer.hpp"

namespace caffe {


template 
class UpsampleLayer : public Layer {
 public:
  explicit UpsampleLayer(const LayerParameter& param)
      : Layer(param) {}
  virtual void LayerSetUp(const vector*>& bottom,
      const vector*>& top);
  virtual void Reshape(const vector*>& bottom,
      const vector*>& top);

  virtual inline const char* type() const { return "Upsample"; }
  virtual inline int ExactNumBottomBlobs() const { return 2; }
  virtual inline int ExactNumTopBlobs() const { return 1; }

 protected:
  virtual void Forward_cpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Forward_gpu(const vector*>& bottom,
      const vector*>& top);

  virtual void Backward_cpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);
  virtual void Backward_gpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);

/*
  virtual void UpsampleForward(const int nthreads, int in_w, int in_h,
      int out_w, int out_h, const Dtype* bottom_data,
      const Dtype* bottom_mask, Dtype* top_data);
  virtual void UpsampleBackward(const int nthreads, int in_w, int in_h,
      int out_w, int out_h, const Dtype* top_diff,
      const Dtype* bottom_mask, Dtype* bottom_diff);
*/

  int channels_;
  int height_;
  int width_;
  int scale_h_, scale_w_;
  bool pad_out_h_, pad_out_w_;
  int upsample_h_, upsample_w_;


};

}  // namespace caffe

#endif  

==========================================================================

//upsample_layer.cpp
#include 
#include 
#include 
#include 

#include "caffe/layers/upsample_layer.hpp"

namespace caffe {

template 
void UpsampleLayer::LayerSetUp(const vector*>& bottom,
      const vector*>& top) {
  UpsampleParameter upsample_param = this->layer_param_.upsample_param();
  CHECK((upsample_param.has_upsample_h() && upsample_param.has_upsample_w())
      || (!upsample_param.has_scale() && upsample_param.has_scale_h()
      && upsample_param.has_scale_w())
      || (!upsample_param.has_scale_h() && !upsample_param.has_scale_w()))
      << "upsample_h & upsample_w are required, else (DEPRECATED) "
      << "scale OR scale_h & scale_w are required.";

  if (upsample_param.has_upsample_h() && upsample_param.has_upsample_w()) {
    upsample_h_ = upsample_param.upsample_h();
    upsample_w_ = upsample_param.upsample_w();
    CHECK_GT(upsample_h_, 1);
    CHECK_GT(upsample_w_, 1);
  } else {
    LOG(INFO) << "Params 'pad_out_{}_' are deprecated. Please declare upsample"
        << " height and width useing the upsample_h, upsample_w parameters.";
    if (!upsample_param.has_scale_h()) {
      scale_h_ = scale_w_ = upsample_param.scale();
      CHECK_GT(scale_h_, 1);
    } else {
      scale_h_ = upsample_param.scale_h();
      scale_w_ = upsample_param.scale_w();
      CHECK_GT(scale_h_, 1);
      CHECK_GT(scale_w_, 1);
    }
    pad_out_h_ = upsample_param.pad_out_h();
    pad_out_w_ = upsample_param.pad_out_w();
    CHECK(!pad_out_h_ || scale_h_ == 2) 
        << "Output height padding compensation requires scale_h == 2, otherwise "
        << "the output size is ill-defined.";
    CHECK(!pad_out_w_ || scale_w_ == 2) 
        << "Output width padding compensation requires scale_w == 2, otherwise "
        << "the output size is ill-defined.";
    upsample_h_ = upsample_w_ = -1;  // flag to calculate in Reshape
  }
}

template 
void UpsampleLayer::Reshape(const vector*>& bottom,
      const vector*>& top) {
  CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, "
      << "corresponding to (num, channels, height, width)";
  CHECK_EQ(4, bottom[1]->num_axes()) << "Input mask must have 4 axes, "
      << "corresponding to (num, channels, height, width)";
  CHECK_EQ(bottom[0]->num(), bottom[1]->num());
  CHECK_EQ(bottom[0]->channels(), bottom[1]->channels());
  CHECK_EQ(bottom[0]->height(), bottom[1]->height());
  CHECK_EQ(bottom[0]->width(), bottom[1]->width());

  if (upsample_h_ <= 0 || upsample_w_ <= 0) {
    upsample_h_ = bottom[0]->height() * scale_h_ - int(pad_out_h_);
    upsample_w_ = bottom[0]->width() * scale_w_ - int(pad_out_w_);
  }
  top[0]->Reshape(bottom[0]->num(), bottom[0]->channels(), upsample_h_,
      upsample_w_);
  channels_ = bottom[0]->channels();
  height_ = bottom[0]->height();
  width_ = bottom[0]->width();
}

template 
void UpsampleLayer::Forward_cpu(const vector*>& bottom,
      const vector*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  const Dtype* bottom_mask_data = bottom[1]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();

  // Initialize
  const int top_count = top[0]->count();
  caffe_set(top_count, Dtype(0), top_data);
  // The main loop
  for (int n = 0; n < bottom[0]->num(); ++n) {
    for (int c = 0; c < channels_; ++c) {
      for (int i = 0; i < height_ * width_; ++i) {
        const int idx = static_cast(bottom_mask_data[i]);
        if (idx >= upsample_h_ * upsample_w_) {
          // this can happen if the pooling layer that created the input mask
          // had an input with different size to top[0]
          LOG(FATAL) << "upsample top index " << idx << " out of range - "
            << "check scale settings match input pooling layer's "
            << "downsample setup";
        }
        top_data[idx] = bottom_data[i];
      }
      // compute offset
      bottom_data += bottom[0]->offset(0, 1);
      bottom_mask_data += bottom[1]->offset(0, 1);
      top_data += top[0]->offset(0, 1);
    }
  }
}

template 
void UpsampleLayer::Backward_cpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    const Dtype* bottom_mask_data = bottom[1]->cpu_data();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();

    const int bottom_count = bottom[0]->count();
    caffe_set(bottom_count, Dtype(0), bottom_diff);
    // The main loop
    for (int n = 0; n < bottom[0]->num(); ++n) {
      for (int c = 0; c < channels_; ++c) {
        for (int i = 0; i < height_ * width_; ++i) {
          const int idx = static_cast(bottom_mask_data[i]);
          if (idx >= height_ * width_ * scale_h_ * scale_w_) {
            // this can happen if the pooling layer that created
            // the input mask had an input with different size to top[0]
            LOG(FATAL) << "upsample top index " << idx << " out of range - "
              << "check scale settings match input pooling layer's downsample setup";
          }
          bottom_diff[i] = top_diff[idx];
        }
        // compute offset
        bottom_diff += bottom[0]->offset(0, 1);
        bottom_mask_data += bottom[1]->offset(0, 1);
        top_diff += top[0]->offset(0, 1);
      }
    }
  }
}


#ifdef CPU_ONLY
STUB_GPU(UpsampleLayer);
#endif

INSTANTIATE_CLASS(UpsampleLayer);
REGISTER_LAYER_CLASS(Upsample);

}  // namespace caffe

==========================================================================

//upsample_layer.cu
#include 
#include 
#include 

#include "caffe/layers/upsample_layer.hpp"

namespace caffe {

template 
  __global__ void UpsampleForward(const int nthreads, int in_w, int in_h,
      int out_w, int out_h, const Dtype* bottom_data,
      const Dtype* bottom_mask, Dtype* top_data) {
    CUDA_KERNEL_LOOP(index, nthreads) {
      int offset = index / (in_w * in_h) * out_w * out_h;
      int upsample_idx = static_cast(bottom_mask[index]);
      top_data[offset + upsample_idx] = bottom_data[index];
    }
  }

template 
void UpsampleLayer::Forward_gpu(const vector*>& bottom,
      const vector*>& top) {
  const Dtype* bottom_data = bottom[0]->gpu_data();
  const Dtype* bottom_mask = bottom[1]->gpu_data();
  Dtype* top_data = top[0]->mutable_gpu_data();
  caffe_gpu_set(top[0]->count(), Dtype(0), top_data);
  int bottom_count = bottom[0]->count();
  UpsampleForward<<>>(
      bottom_count, bottom[0]->width(), bottom[0]->height(), 
      top[0]->width(), top[0]->height(), bottom_data, bottom_mask, top_data);
  CUDA_POST_KERNEL_CHECK;
}

template 
  __global__ void UpsampleBackward(const int nthreads, int in_w, int in_h,
      int out_w, int out_h, const Dtype* top_diff,
      const Dtype* bottom_mask, Dtype* bottom_diff) {
    CUDA_KERNEL_LOOP(index, nthreads) {
      int offset = index / (in_w * in_h) * out_w * out_h;
      int upsample_idx = static_cast(bottom_mask[index]);
      bottom_diff[index] = top_diff[offset + upsample_idx];
    }
  }

template 
void UpsampleLayer::Backward_gpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* top_diff = top[0]->gpu_diff();
    const Dtype* bottom_mask = bottom[1]->gpu_data();
    Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
    const int bottom_count = bottom[0]->count();
    caffe_gpu_set(bottom_count, Dtype(0.), bottom_diff);
    UpsampleBackward<<>>(
        bottom_count, bottom[0]->width(), bottom[0]->height(), 
        top[0]->width(), top[0]->height(), top_diff, bottom_mask, bottom_diff);
    CUDA_POST_KERNEL_CHECK;
  }
}


INSTANTIATE_LAYER_GPU_FUNCS(UpsampleLayer);


}  // namespace caffe

二 修改SegNet数据输入层

原来的数据输入层,为此作者还新加了DenseImageDataLayer.其实没必要用这个层。

layer {
  name: "data"
  type: "DenseImageData"
  top: "data"
  top: "label"
  dense_image_data_param {
    source: "/SegNet/CamVid/train.txt"	# Change this to the absolute path to your data file
    batch_size: 4   			# Change this number to a batch size that will fit on your GPU
    shuffle: true
  }
}

数据输入层写为下面的样式。将data label 分别输入。

layer {
  name: "data"
  type: "Data"
  top:"data"
  include {
    phase: TRAIN
  }
  transform_param {
mean_file: "G:/interest_of_imags_for_recognation/VOC2012/Resize224/Img_train_mean.binaryproto"
  }
  data_param {
    source: "G:/interest_of_imags_for_recognation/VOC2012/Resize224/Img_train"
    batch_size: 1
    backend: LMDB
  }
}
layer {
  name: "label"
  type: "Data"
  top:"label"
  include {
    phase: TRAIN
  }
  data_param {
    source: "G:/interest_of_imags_for_recognation/VOC2012/Resize224/Label_train"
    batch_size: 1
    backend: LMDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  include {
    phase: TEST
  }
  transform_param {
	mean_file: "G:/interest_of_imags_for_recognation/VOC2012/Resize224/Img_val_mean.binaryproto"
  }
  data_param {
    source: "G:/interest_of_imags_for_recognation/VOC2012/Resize224/Img_val"
    batch_size: 1
    backend: LMDB
  }
}
layer {
  name: "label"
  type: "Data"
  top: "label"
  include {
    phase: TEST
  }
  data_param {
    source: "G:/interest_of_imags_for_recognation/VOC2012/Resize224/Label_val"
    batch_size: 1
    backend: LMDB
  }
}

你可能感兴趣的:(Caffe)