如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步。而作为新人,你的第一个问题或许是:“论文那么多,从哪一篇读起?”
本文将试图解决这个问题——文章标题本来是:“从入门到绝望,无止境的深度学习论文”。请诸位备好道具,开启头悬梁锥刺股的学霸姿势。
开个玩笑。
但对非科班出身的开发者而言,读论文的确可以成为一件很痛苦的事。但好消息来了——为避免初学者陷入迷途苦海,昵称为 songrotek 的学霸在 GitHub 发布了他整理的深度学习路线图,分门别类梳理了新入门者最需要学习的 DL 论文,又按重要程度给每篇论文打上星星。
截至目前,这份 DL 论文路线图已在 GitHub 收获了近万颗星星好评,人气极高。雷锋网感到非常有必要对大家进行介绍。
闲话少说,该路线图根据以下四项原则而组织:
从大纲到细节
从经典到前沿
从一般到具体领域
关注最新研究突破
作者注:有许多论文很新但非常值得一读。
█[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning." An MIT Press book. (2015). [pdf] (Ian Goodfellow 等大牛所著的教科书,乃深度学习圣经。你可以同时研习这本书以及以下论文) ★★★★★
地址:https://github.com/HFTrader/DeepLearningBook/raw/master/DeepLearningBook.pdf
█[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521.7553 (2015): 436-444. [pdf] (三巨头做的调查) ★★★★★
地址:http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
█[2] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554. [pdf] (深度学习前夜) ★★★
地址:http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf
█[3] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313.5786 (2006): 504-507. [pdf] (里程碑,展示了深度学习的前景) ★★★
地址:http://www.cs.toronto.edu/~hinton/science.pdf
█[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012. [pdf] (AlexNet, 深度学习突破) ★★★★★
地址:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
█[5] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). [pdf] (VGGNet,神经网络变得很深层) ★★★
地址:https://arxiv.org/pdf/1409.1556.pdf
█[6] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [pdf] (GoogLeNet) ★★★
地址:http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
█[7] He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015). [pdf](ResNet,特别深的神经网络, CVPR 最佳论文) ★★★★★
地址:https://arxiv.org/pdf/1512.03385.pdf
█[8] Hinton, Geoffrey, et al. "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups." IEEE Signal Processing Magazine 29.6 (2012): 82-97. [pdf] (语音识别的突破) ★★★★
地址:http://cs224d.stanford.edu/papers/maas_paper.pdf
█[9] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. "Speech recognition with deep recurrent neural networks." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf] (RNN) ★★★
地址:http://arxiv.org/pdf/1303.5778.pdf
█[10] Graves, Alex, and Navdeep Jaitly. "Towards End-To-End Speech Recognition with Recurrent Neural Networks." ICML. Vol. 14. 2014. [pdf] ★★★
地址:http://www.jmlr.org/proceedings/papers/v32/graves14.pdf
█[11] Sak, Haşim, et al. "Fast and accurate recurrent neural network acoustic models for speech recognition." arXiv preprint arXiv:1507.06947 (2015). [pdf] (谷歌语音识别系统) ★★★
地址:http://arxiv.org/pdf/1507.06947
█[12] Amodei, Dario, et al. "Deep speech 2: End-to-end speech recognition in english and mandarin." arXiv preprint arXiv:1512.02595 (2015). [pdf] (百度语音识别系统) ★★★★
地址:https://arxiv.org/pdf/1512.02595.pdf
█[13] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig "Achieving Human Parity in Conversational Speech Recognition." arXiv preprint arXiv:1610.05256 (2016). [pdf] (最前沿的语音识别, 微软) ★★★★
地址:https://arxiv.org/pdf/1610.05256v1
研读以上论文之后,你将对深度学习历史、模型的基本架构(包括 CNN, RNN, LSTM)有一个基础的了解,并理解深度学习如何应用于图像和语音识别问题。接下来的论文,将带你深入探索深度学习方法、在不同领域的应用和前沿尖端技术。我建议,你可以根据兴趣和工作/研究方向进行选择性的阅读。
█[14] Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012). [pdf] (Dropout) ★★★
地址:https://arxiv.org/pdf/1207.0580.pdf
█[15] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958. [pdf] ★★★
地址:http://www.jmlr.org/papers/volume15/srivastava14a.old/source/srivastava14a.pdf
█[16] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015). [pdf] (2015 年的杰出研究) ★★★★
地址:http://arxiv.org/pdf/1502.03167
█[17] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016). [pdf] (Batch Normalization 的更新) ★★★★
地址:https://arxiv.org/pdf/1607.06450.pdf?utm_source=sciontist.com&utm_medium=refer&utm_campaign=promote
█[18] Courbariaux, Matthieu, et al. "Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1." [pdf] (新模型,快) ★★★
地址:https://pdfs.semanticscholar.org/f832/b16cb367802609d91d400085eb87d630212a.pdf
█[19] Jaderberg, Max, et al. "Decoupled neural interfaces using synthetic gradients." arXiv preprint arXiv:1608.05343 (2016). [pdf] (训练方法的创新,研究相当不错) ★★★★★
地址:https://arxiv.org/pdf/1608.05343
█[20] Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge transfer." arXiv preprint arXiv:1511.05641 (2015). [pdf] (改进此前的训练网络,来缩短训练周期) ★★★
地址:Accelerating Learning via Knowledge Transfer
█[21] Wei, Tao, et al. "Network Morphism." arXiv preprint arXiv:1603.01670 (2016). [pdf] (改进此前的训练网络,来缩短训练周期) ★★★
地址:[1603.01670] Network Morphism
█[22] Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning." ICML (3) 28 (2013): 1139-1147. [pdf] (Momentum optimizer) ★★
地址:http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf
█[23] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). [pdf] (Maybe used most often currently) ★★★
地址:http://arxiv.org/pdf/1412.6980
█[24] Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." arXiv preprint arXiv:1606.04474 (2016). [pdf] (Neural Optimizer,Amazing Work) ★★★★★
地址:https://arxiv.org/pdf/1606.04474
█[25] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding." CoRR, abs/1510.00149 2 (2015). [pdf] (ICLR best paper, new direction to make NN running fast,DeePhi Tech Startup) ★★★★★
地址:https://pdfs.semanticscholar.org/5b6c/9dda1d88095fa4aac1507348e498a1f2e863.pdf
█[26] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size." arXiv preprint arXiv:1602.07360 (2016). [pdf] (Also a new direction to optimize NN,DeePhi Tech Startup) ★★★★
地址:http://arxiv.org/pdf/1602.07360
█[27] Le, Quoc V. "Building high-level features using large scale unsupervised learning." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf] (里程碑, 吴恩达, 谷歌大脑, Cat) ★★★★
地址:http://arxiv.org/pdf/1112.6209.pdf&embed
█[28] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013). [pdf](VAE) ★★★★
地址:http://arxiv.org/pdf/1312.6114
█[29] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014. [pdf](GAN,很酷的想法) ★★★★★
地址:http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
█[30] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015). [pdf] (DCGAN) ★★★★
地址:http://arxiv.org/pdf/1511.06434
█[31] Gregor, Karol, et al. "DRAW: A recurrent neural network for image generation." arXiv preprint arXiv:1502.04623 (2015). [pdf] (VAE with attention, 很出色的研究) ★★★★★
地址:http://jmlr.org/proceedings/papers/v37/gregor15.pdf
█[32] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks." arXiv preprint arXiv:1601.06759 (2016). [pdf] (PixelRNN) ★★★★
地址:http://arxiv.org/pdf/1601.06759
█[33] Oord, Aaron van den, et al. "Conditional image generation with PixelCNN decoders." arXiv preprint arXiv:1606.05328 (2016). [pdf] (PixelCNN) ★★★★
地址:https://arxiv.org/pdf/1606.05328
█[34] Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013). [pdf] (LSTM, 效果很好,展示了 RNN 的性能) ★★★★
地址:http://arxiv.org/pdf/1308.0850
█[35] Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014). [pdf] (第一篇 Sequence-to-Sequence 的论文) ★★★★
地址:http://arxiv.org/pdf/1406.1078
█[36] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. 2014. [pdf] (杰出研究) ★★★★★
地址:http://papers.nips.cc/paper/5346-information-based-learning-by-agents-in-unbounded-state-spaces.pdf
█[37] Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate." arXiv preprint arXiv:1409.0473 (2014). [pdf] ★★★★
地址:https://arxiv.org/pdf/1409.0473v7.pdf
█[38] Vinyals, Oriol, and Quoc Le. "A neural conversational model." arXiv preprint arXiv:1506.05869 (2015). [pdf] (Seq-to-Seq 聊天机器人) ★★★
地址:http://arxiv.org/pdf/1506.05869.pdf%20(http://arxiv.org/pdf/1506.05869.pdf)
█[39] Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014). [pdf] (未来计算机的基础原型机) ★★★★★
地址:http://arxiv.org/pdf/1410.5401.pdf
█[40] Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement learning neural Turing machines." arXiv preprint arXiv:1505.00521 362 (2015). [pdf] ★★★
地址:https://pdfs.semanticscholar.org/f10e/071292d593fef939e6ef4a59baf0bb3a6c2b.pdf
█[41] Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." arXiv preprint arXiv:1410.3916 (2014). [pdf] ★★★
地址:http://arxiv.org/pdf/1410.3916
█[42] Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. "End-to-end memory networks." Advances in neural information processing systems. 2015. [pdf] ★★★★
地址:http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
█[43] Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." Advances in Neural Information Processing Systems. 2015. [pdf] ★★★★
地址:http://papers.nips.cc/paper/5866-pointer-networks.pdf
█[44] Graves, Alex, et al. "Hybrid computing using a neural network with dynamic external memory." Nature (2016). [pdf] (里程碑,把以上论文的想法整合了起来) ★★★★★
地址:https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf
█[45] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013). [pdf]) (第一个以深度强化学习为题的论文) ★★★★
地址:http://arxiv.org/pdf/1312.5602.pdf
█[46] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533. [pdf] (里程碑) ★★★★★
地址:https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
█[47] Wang, Ziyu, Nando de Freitas, and Marc Lanctot. "Dueling network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581 (2015). [pdf] (ICLR 最佳论文,很棒的想法) ★★★★
地址:http://arxiv.org/pdf/1511.06581
█[48] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." arXiv preprint arXiv:1602.01783 (2016). [pdf] (前沿方法) ★★★★★
地址:http://arxiv.org/pdf/1602.01783
█[49] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015). [pdf] (DDPG) ★★★★
地址:http://arxiv.org/pdf/1509.02971
█[50] Gu, Shixiang, et al. "Continuous Deep Q-Learning with Model-based Acceleration." arXiv preprint arXiv:1603.00748 (2016). [pdf] (NAF) ★★★★
地址:http://arxiv.org/pdf/1603.00748
█[51] Schulman, John, et al. "Trust region policy optimization." CoRR, abs/1502.05477 (2015). [pdf] (TRPO) ★★★★
地址:http://www.jmlr.org/proceedings/papers/v37/schulman15.pdf
█[52] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489. [pdf] (AlphaGo) ★★★★★
地址:http://willamette.edu/~levenick/cs448/goNature.pdf
█[53] Bengio, Yoshua. "Deep Learning of Representations for Unsupervised and Transfer Learning." ICML Unsupervised and Transfer Learning 27 (2012): 17-36. [pdf] (这是一个教程) ★★★
地址:http://www.jmlr.org/proceedings/papers/v27/bengio12a/bengio12a.pdf
█[54] Silver, Daniel L., Qiang Yang, and Lianghao Li. "Lifelong Machine Learning Systems: Beyond Learning Algorithms." AAAI Spring Symposium: Lifelong Machine Learning. 2013. [pdf] (对终生学习的简单讨论) ★★★
地址:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.7800&rep=rep1&type=pdf
█[55] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015). [pdf] (大神们的研究) ★★★★
地址:http://arxiv.org/pdf/1503.02531
█[56] Rusu, Andrei A., et al. "Policy distillation." arXiv preprint arXiv:1511.06295 (2015). [pdf] (RL 领域) ★★★
地址:http://arxiv.org/pdf/1511.06295
█[57] Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhu★★★tdinov. "Actor-mimic: Deep multitask and transfer reinforcement learning." arXiv preprint arXiv:1511.06342 (2015). [pdf] (RL 领域) ★★★
地址:http://arxiv.org/pdf/1511.06342
█[58] Rusu, Andrei A., et al. "Progressive neural networks." arXiv preprint arXiv:1606.04671 (2016). [pdf] (杰出研究, 很新奇的想法) ★★★★★
地址:https://arxiv.org/pdf/1606.04671
█[59] Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "Human-level concept learning through probabilistic program induction." Science 350.6266 (2015): 1332-1338. [pdf] (不含深度学习但值得一读) ★★★★★
地址:http://clm.utexas.edu/compjclub/wp-content/uploads/2016/02/lake2015.pdf
█[60] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "Siamese Neural Networks for One-shot Image Recognition."(2015) [pdf] ★★★
地址:http://www.cs.utoronto.ca/~gkoch/files/msc-thesis.pdf
█[61] Santoro, Adam, et al. "One-shot Learning with Memory-Augmented Neural Networks." arXiv preprint arXiv:1605.06065 (2016). [pdf] (one shot 学习的基础一步) ★★★★
地址:http://arxiv.org/pdf/1605.06065
█[62] Vinyals, Oriol, et al. "Matching Networks for One Shot Learning." arXiv preprint arXiv:1606.04080 (2016). [pdf] ★★★
地址:https://arxiv.org/pdf/1606.04080
█[63] Hariharan, Bharath, and Ross Girshick. "Low-shot visual object recognition." arXiv preprint arXiv:1606.02819 (2016). [pdf] (通向更大规模数据的一步) ★★★★
地址:http://arxiv.org/pdf/1606.02819