- [论文笔记]自监督sketch-to-image生成:Self-Supervised Sketch-to-Image Synthesis
沉迷单车的追风少年
深度学习-计算机视觉sketch深度学习计算机视觉
前言:2020年顶会同时出现了两篇很有意思的论文《Self-SupervisedSketch-to-ImageSynthesis》和《UnsupervisedSketch-to-PhotoSynthesis》,分别用自监督和无监督的方法做sketch-to-image生成,可以说是GANs在这一任务中表现的巅峰。目录主要贡献主要工作域转换模型TOMPS:边缘图、铅笔画图、草图sketch之间的区别
- 【论文笔记】:DuBox: No-Prior Box Objection Detection via Residual Dual Scale Detectors
Activewaste
#Anchor-free#特征层面#小目标检测DuBoxanchor-free
&Title:DuBox:No-PriorBoxObjectionDetectionviaResidualDualScaleDetectorsGithubaddrNone&Summary介绍了一种新的一阶段检测方法Dubox,它可以在没有先验框的情况下检测物体。设计的双尺度残差单元具有多尺度特性,使双尺度检测器不再独立运行。高层检测器学习低层检测器的残差。Dubox增强了启发式引导的能力,进一步使
- 【论文笔记】AutoML: A survey of the state-of-the-art(下篇)
pip install USART
学习笔记论文阅读记录论文阅读算法深度学习
目录4.ModelGeneration模型生成4.1SearchSpace搜索空间4.1.1Entire-structuredsearchspace基于整个架构的4.1.2Cell-basedsearchspace基于Cell的空间4.1.3Hierarchicalsearchspace层次化的空间4.1.3Morphism-basedsearchspace基于“态射”的空间4.2网络优化方法(搜
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- AIGC视频生成模型:Meta的Emu Video模型
好评笔记
#MetaAIGC-视频AIGC机器学习人工智能transformer论文阅读深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- AIGC视频生成国产之光:ByteDance的PixelDance模型
好评笔记
AIGC-视频补档AIGC计算机视觉人工智能深度学习机器学习论文阅读面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言输入训练和推理时的数据处理总结相关工作视频生成长视频生成方法模型架构
- 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码)
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,
- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 【论文笔记】Multi-Task Learning as a Bargaining Game
xhyu61
机器学习学习笔记论文笔记论文阅读人工智能深度学习
Abstract本文将多任务学习中的梯度组合步骤视为一种讨价还价式博弈(bargaininggame),通过游戏,各个任务协商出共识梯度更新方向。在一定条件下,这种问题具有唯一解(NashBargainingSolution),可以作为多任务学习中的一种原则方法。本文提出Nash-MTL,推导了其收敛性的理论保证。1Introduction大部分MTL优化算法遵循一个通用方案。计算所有任务的梯度g
- [论文笔记] LLaVA
心心喵
论文笔记论文阅读
一、LLaVA论文中的主要工作和实验结果ExistingGap:之前的大部分工作都在做模态对齐,做图片的representationlearning,而没有针对ChatBot(多轮对话,指令理解)这种场景优化。Contribution:这篇工作已经在BLIP-2之后了,所以Image的理解能力不是LLaVA希望提升的重点,LLaVA是想提升多模态模型的Instruction-Followingab
- [论文笔记] LLM模型剪枝
心心喵
论文笔记论文阅读剪枝算法
AttentionIsAllYouNeedButYouDon’tNeedAllOfItForInferenceofLargeLanguageModelsLLaMA2在剪枝时,跳过ffn和跳过fulllayer的效果差不多。相比跳过ffn/fulllayer,跳过attentionlayer的影响会更小。跳过attentionlayer:7B/13B从100%参数剪枝到66%,平均指标只下降1.7~
- 【论文笔记】Training language models to follow instructions with human feedback B部分
Ctrl+Alt+L
大模型论文整理论文笔记论文阅读语言模型人工智能自然语言处理
TraininglanguagemodelstofollowinstructionswithhumanfeedbackB部分回顾一下第一代GPT-1:设计思路是“海量无标记文本进行无监督预训练+少量有标签文本有监督微调”范式;模型架构是基于Transformer的叠加解码器(掩码自注意力机制、残差、Layernorm);下游各种具体任务的适应是通过在模型架构的输出后增加线性权重WyW_{y}Wy实
- 【论文笔记】:LAYN:用于小目标检测的轻量级多尺度注意力YOLOv8网络
hhhhhhkkkyyy
论文阅读目标检测YOLO
背景针对嵌入式设备对目标检测算法的需求,大多数主流目标检测框架目前缺乏针对小目标的具体改进,然后提出的一种轻量级多尺度注意力YOLOv8小目标检测算法。小目标检测精度低的原因随着网络在训练过程中的加深,检测到的目标容易丢失边缘信息和灰度信息等。获得高级语义信息也较少,图像中可能存在一些噪声信息,误导训练网络学习不正确的特征。映射到原始图像的感受野的大小。当感受野相对较小时,空间结构特征保留较多,但
- 激光SLAM--(8) LeGO-LOAM论文笔记
lonely-stone
slam激光SLAM论文阅读
论文标题:LeGO-LOAM:LightweightandGround-OptimizedLidarOdometryandMappingonVariableTerrain应用在可变地形场景的轻量级的、并利用地面优化的LOAMABSTRACT轻量级的、基于地面优化的LOAM实时进行六自由度位姿估计,应用在地面的车辆上。强调应用在地面车辆上是因为在这里面要求雷达必须水平安装,而像LOAM和LIO-SA
- 论文浅尝 - AAAI2020 | 迈向建立多语言义元知识库:用于 BabelNet Synsets 义元预测...
开放知识图谱
机器学习人工智能知识图谱自然语言处理深度学习
论文笔记整理:潘锐,天津大学硕士。来源:AAAI2020链接:https://arxiv.org/pdf/1912.01795.pdf摘要义原被定义为人类语言的最小语义单位。义原知识库(KBs)是一种包含义原标注词汇的知识库,它已成功地应用于许多自然语言处理任务中。然而,现有的义原知识库建立在少数几种语言上,阻碍了它们的广泛应用。为此论文提出在多语种百科全书词典BabelNet的基础上建立一个统一
- [论文笔记] LLM数据集——LongData-Corpus
心心喵
论文笔记服务器ubuntulinux
https://huggingface.co/datasets/yuyijiong/LongData-Corpus1、hf的数据在开发机上要设置sshkey,然后cat复制之后在设置在hf上2、中文小说数据在云盘上清华大学云盘下载:#!/bin/bash#BaseURLbase_url="https://cloud.tsinghua.edu.cn/d/0670fcb14d294c97b5cf/fi
- [论文笔记] eval-big-refactor lm_eval 每两个任务使用一个gpu,并保证端口未被使用
心心喵
论文笔记restful后端
1.5B在eval时候两个任务一个gpu是可以的。7B+在evalbelebele时会OOM,所以分配时脚本不同。eval_fast.py:importsubprocessimportargparseimportosimportsocket#参数列表task_name_list=["flores_mt_en_to_id","flores_mt_en_to_vi","flores_mt_en_to_
- 【论文笔记】Separating the “Chirp” from the “Chat”: Self-supervised Visual Grounding of Sound and Language
xhyu61
机器学习学习笔记论文笔记论文阅读
Abstract提出了DenseAV,一种新颖的双编码器接地架构,仅通过观看视频学习高分辨率、语义有意义和视听对齐的特征。在没有明确的本地化监督的情况下,DenseAV可以发现单词的"意义"和声音的"位置"。此外,它在没有监督的情况下自动发现并区分这两种类型的关联。DenseAV的定位能力源于一种新的多头特征聚合算子,该算子直接比较稠密的图像和音频表示进行对比学习。相比之下,许多其他学习"全局"音
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- 【视觉三维重建】【论文笔记】Deblurring 3D Gaussian Splatting
CS_Zero
论文阅读
去模糊的3D高斯泼溅,看Demo比3D高斯更加精细,对场景物体细节的还原度更高,[官网](https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/)背景技术Volumetricrendering-basednerualfields:NeRF.Rasterizationrendering:3D-GS.Rasterization比vol
- [论文笔记] Transformer-XL
心心喵
论文笔记transformer深度学习人工智能
这篇论文提出的Transformer-XL主要是针对Transformer在解决长依赖问题中受到固定长度上下文的限制,如Bert采用的Transformer最大上下文为512(其中是因为计算资源的限制,不是因为位置编码,因为使用的是绝对位置编码正余弦编码)。Transformer-XL能学习超过固定长度的依赖性,而不破坏时间一致性。它由段级递归机制和一种新的位置编码方案组成。该方法不仅能够捕获长期
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 多模态相关论文笔记
靖待
大模型人工智能论文阅读
(cilp)LearningTransferableVisualModelsFromNaturalLanguageSupervision从自然语言监督中学习可迁移的视觉模型openAI2021年2月48页PDFCODECLIP(ContrastiveLanguage-ImagePre-Training)对比语言图像预训练模型引言它比ImageNet模型效果更好,计算效率更高。尤其是zero-sho
- 【论文笔记 · PFM】Lag-Llama: Towards Foundation Models for Time Series Forecasting
lokol.
论文笔记论文阅读llama
Lag-Llama:TowardsFoundationModelsforTimeSeriesForecasting摘要本文提出Lag-Llama,在大量时间序列数据上训练的通用单变量概率时间序列预测模型。模型在分布外泛化能力上取得较好效果。模型使用平滑破坏幂律(smoothlybrokenpower-laws)。介绍目前任务主要集中于在相同域的数据上训练模型。当前已有的大规模通用模型在大规模不同数
- 【论文笔记】Unsupervised Learning of Video Representations using LSTMs
奶茶不加糖え
lstm深度学习自然语言处理
摘要翻译我们使用长短时记忆(LongShortTermMemory,LSTM)网络来学习视频序列的表征。我们的模型使用LSTM编码器将输入序列映射到一个固定长度的表征向量。之后我们用一个或多个LSTM解码器解码这个表征向量来实现不同的任务,比如重建输入序列、预测未来序列。我们对两种输入序列——原始的图像小块和预训练卷积网络提取的高层表征向量——都做了实验。我们探索不同的设计选择,例如解码器的LST
- MOSSE算法论文笔记以及代码解释
five days
计算机视觉深度学习机器学习
论文《VisualObjectTrackingusingAdaptiveCorrelationFilters》代码github1.论文idea提出以滤波器求相关的形式,找到最大响应处的位置,也就是我们所跟踪的目标的中心,进而不断的更新跟踪目标框和滤波器。2.跟踪策略如图,根据初始帧圈出的目标框训练滤波器,最大响应处为目标框的中心点,当移动到下一帧时,根据滤波器求相关的算法获得最大响应值,进而得出下
- Attention Is All Your Need论文笔记
xiaoyan_lu
论文笔记论文阅读
论文解决了什么问题?提出了一个新的简单网络架构——transformer,仅仅是基于注意力机制,完全免去递推和卷积,使得神经网络训练地速度极大地提高。Weproposeanewsimplenetworkarchitecture,theTransformer,basedsolelyonattentionmechanisms,dispensingwithrecurrenceandconvolution
- 论文笔记:相似感知的多模态假新闻检测
图学习的小张
论文笔记论文阅读python
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型实验论文地址:SAFE背景 在此之前,对利用新闻文章中文本信息和视觉信息之间的关系(相似性)的关注较少。这种相似性有助于识别虚假新闻,例如,虚假新闻也许会试图使用不相关的图
- [论文总结] 深度学习在农业领域应用论文笔记12
落痕的寒假
论文总结深度学习论文阅读人工智能
文章目录1.3D-ZeF:A3DZebrafishTrackingBenchmarkDataset(CVPR,2020)摘要背景相关研究所提出的数据集方法和结果个人总结2.Automatedflowerclassificationoveralargenumberofclasses(ComputerVision,Graphics&ImageProcessing,2008)摘要背景分割与分类数据集和实
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr