HTable作为客户端操作HBase数据的入口,是我们最常见的一个类。
当向HBase 写入数据时, 都发生了写什么呢?
HTable中
public void put(final List puts) throws IOException {
// 添加Put到buffer,如果buffer已经足够长,则提交到集群
getBufferedMutator().mutate(puts);
if (autoFlush) {
// 如果BufferedMutatorImpl不为null,则flush所有的写操作
flushCommits();
}
}
BufferedMutatorImpl中
try {
...
ap.submit(tableName, writeAsyncBuffer, true, null, false);
...
} finally {
currentWriteBufferSize = 0;
for (Row mut : writeAsyncBuffer) {
if (mut instanceof Mutation) {
currentWriteBufferSize += ((Mutation) mut).heapSize();
}
}
}
AsyncProcess中获取region信息
/**
*找到每条记录所在的region
*/
while (it.hasNext()) {
Row r = it.next();
...
RegionLocations locs = connection
.locateRegion(tableName, r.getRow(), true, true, RegionReplicaUtil.DEFAULT_REPLICA_ID);
if (canTakeOperation(loc, regionIncluded, serverIncluded)) {
Action action = new Action(r, ++posInList);
setNonce(ng, r, action);
retainedActions.add(action);
// TODO: replica-get is not supported on this path
byte[] regionName = loc.getRegionInfo().getRegionName();
addAction(loc.getServerName(), regionName, action, actionsByServer, nonceGroup);
it.remove();
}
}
发送异步请求:
AsyncRequestFutureImpl ars = createAsyncRequestFuture(tableName, retainedActions, nonceGroup, pool,
callback, results, needResults);
ars.sendMultiAction(actionsByServer, 1, null, false);
根据MultiAction,封装多线程rpc任务:
run(){
MultiResponse res;
MultiServerCallable callable = null;
callable = createCallable(server, tableName, multiAction);
RpcRetryingCaller caller = createCaller(callable);
if (callsInProgress != null)
callsInProgress.add(callable);
// 远程RPC调用入口
res = caller.callWithoutRetries(callable, timeout);
if (res == null) {
// Cancelled
return;
}
receiveMultiAction(multiAction, server, res, numAttempt);
}
调用MultiServerCallable的call()方法,发送rpc请求:
try {
responseProto = getStub().multi(controller, requestProto);
} catch (ServiceException e) {
throw ProtobufUtil.getRemoteException(e);
}
(1)把put操作添加到BufferedMutatorImpl的writeAsyncBuffer列表中,符合条件(自动flush或者超过了阀值writeBufferSize)就通过AsyncProcess异步批量提交。
(2)在提交之前,我们要根据每个rowkey找到它们归属的region server,这个定位的过程是通过HConnection的locateRegion方法获得的,然后再把这些rowkey按照HRegionLocation分组。
(3)通过多线程,一个HRegionLocation构造MultiServerCallable,然后通过rpcCallerFactory. newCaller()执行调用,忽略掉失败重新提交和错误处理,客户端的提交操作到此结束。
设置HTable参数
1、通过调用HTable.setAutoFlush(false)方法可以将HTable写客户端的自动flush关闭,这样可以批量写入数据到HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存时,才实际向HBase服务端发起写请求。默认情况下auto flush是开启的。
2、通过调用HTable.setWriteBufferSize(writeBufferSize)方法可以设置HTable客户端的写buffer大小,如果新设置的buffer小于当前写buffer中的数据时,buffer将会被flush到服务端。其中,writeBufferSize的单位是byte字节数,可以根据实际写入数据量的多少来设置该值。,()一般说是设置成5MB?)
3、在HBae中,客户端向集群中的RegionServer提交数据时(Put/Delete操作),首先会先写WAL(Write Ahead Log)日志(即HLog,一个RegionServer上的所有Region共享一个HLog),只有当WAL日志写成功后,再接着写MemStore,然后客户端被通知提交数据成功;如果写WAL日志失败,客户端则被通知提交失败。这样做的好处是可以做到RegionServer宕机后的数据恢复。
因此,对于相对不太重要的数据,可以在Put/Delete操作时,通过调用Put.setWriteToWAL(false)或Delete.setWriteToWAL(false)函数,放弃写WAL日志,从而提高数据写入的性能。
经验之谈:经过实践,就第二条关闭日志的效果比较明显,其它的效果都不明显,因为提交的过程是异步的,所以提交的时候占用的时间并不多,提交到server端后,server还有一个写入的队列。所以大规模写入数据,别指望着用put来解决。。。mapreduce生成hfile,然后用bulk load的方式比较好。
delete比put要简单很多,直接发送rpc请求
MutateResponse response = getStub().mutate(controller, request);
get在客户端向服务端请求,就简单很多,直接在get()方法进行发送rpc请求:
ClientProtos.GetResponse response = getStub().get(controller, request);
if (response == null)
return null;
return ProtobufUtil.toResult(response.getResult());
立马杀到RSRpcServices中看看get()方法
checkOpen();
// 记录请求RegionServer的次数
requestCount.increment();
// 先找出在哪个region
Region region = getRegion(request.getRegion());
...
if (get.hasClosestRowBefore() && get.getClosestRowBefore()) {
...
} else {
Get clientGet = ProtobufUtil.toGet(get);
if (get.getExistenceOnly() && region.getCoprocessorHost() != null) {
existence = region.getCoprocessorHost().preExists(clientGet);
}
if (existence == null) {
// 从region中取数据
r = region.get(clientGet);
if (get.getExistenceOnly()) {
boolean exists = r.getExists();
if (region.getCoprocessorHost() != null) {
exists = region.getCoprocessorHost().postExists(clientGet, exists);
}
existence = exists;
}
}
}
Scan 查询的模板代码
HTable hTable = new HTable(configuration, tableName);
Scan scan = new Scan();
// scan.setBatch(1000);
scan.setCaching(10000);
scan.setCacheBlocks(false);
ResultScanner resultScanner = hTable.getScanner(scan);
Result result;
while ((result = resultScanner.next()) != null) {
...
}
resultScanner.close();
hTable.close();
==========客户端的优化查询
进去
public ResultScanner getScanner(final Scan scan) throws IOException {
// 是否逆向scan
if (scan.isReversed()) {
...
}
// scan 有大有小
if (scan.isSmall()) {
return new ClientSmallScanner(getConfiguration(), scan, getName(),
this.connection, this.rpcCallerFactory, this.rpcControllerFactory,
pool, tableConfiguration.getReplicaCallTimeoutMicroSecondScan());
} else {
return new ClientScanner(getConfiguration(), scan, getName(), this.connection,
this.rpcCallerFactory, this.rpcControllerFactory,
pool, tableConfiguration.getReplicaCallTimeoutMicroSecondScan());
}
}
ClientSmallScanner 实际上是 ClientScanner 的子类,调用nextScanner() 方法。
调用ScannerCallableWithReplicas类的call()方法
// ScannerCallableWithReplicas的prepare()方法啥事情都没做
callable.prepare(false);
return callable.call(callTimeout);
向服务端发送scan请求
ScanResponse response = null;
controller = controllerFactory.newController();
controller.setPriority(getTableName());
controller.setCallTimeout(callTimeout);
response = getStub().scan(controller, request);
服务端==============
RSRpcServices的scan方法
while (i < rows) {
scannerContext.setBatchProgress(0);
// Collect values to be returned here
moreRows = scanner.nextRaw(values, scannerContext);
if (!values.isEmpty()) {
for (Cell cell : values) {
totalCellSize += CellUtil.estimatedSerializedSizeOf(cell);
}
final boolean partial = scannerContext.partialResultFormed();
// 加入 List 结果集中
results.add(Result.create(values, null, stale, partial));
i++;
}
...
}