运行效果为:
出乎我意料的是,不仅仅保留了对比度,居然还增强了图像的对比度(去雾,不过只适用于比较均匀的雾),不过运行的速度堪忧,500*500的图像都需要 1s 多!
经过 OpenMP 优化,执行时间减少了一半左右
该代码是源于 香港中文大学 计算机科学与工程系 的一篇论文 Contrast Preserving Decolorization
其代码已被收录到 OpenCV 的源码中,位于(注意,3.* 以上才有)
以下是在通读了论文《IEEE International Conference on Computational Photography(ICCP), 2012》之后,对原始代码做的详细注释( OpenCV 原代码中有多处 Bug,我已 fix 掉):
void deColor(InputArray _src, OutputArray _dst, OutputArray _color_boost)
{
Mat I = _src.getMat();
_dst.create(I.size(), CV_8UC1);
Mat dst = _dst.getMat();
_color_boost.create(I.size(), CV_8UC3);
Mat color_boost = _color_boost.getMat();
CV_Assert(!I.empty() && (I.channels() == 3));
// Parameter Setting
const int maxIter = 15;
const double tol = .0001;
int iterCount = 0;
double E = 0;
double pre_E = std::numeric_limits::infinity(); // 返回编译器允许的 double 型的正无穷大
Mat img;
I.convertTo(img, CV_32FC3, 1.0 / 255.0); // 8UC3 -> 32FC3,归一化
// Initialization
Decolor obj;
vector Cg;
vector < vector > polyGrad;
vector comb;
vector alf;
obj.gradSystem(img, polyGrad, Cg, comb);
obj.weakOrder(img, alf);
// Solver
Mat Mt = Mat(int(polyGrad.size()), int(polyGrad[0].size()), CV_32FC1);
obj.weightUpdateMatrix(polyGrad, Cg, Mt);
vector wei;
obj.weightInit(comb, wei);
//////////////////////////////// main loop starting ////////////////////////////////////////
vector G_pos(alf.size());
vector G_neg(alf.size());
vector EXPsum(G_pos.size());
vector EXPterm(G_pos.size());
vector temp(polyGrad[0].size());
vector temp1(polyGrad[0].size());
vector temp2(EXPsum.size());
vector wei1(polyGrad.size());
while (sqrt(pow(E - pre_E, 2)) > tol)
{
iterCount += 1;
pre_E = E;
// 梯度图大小
for (size_t i = 0; i < polyGrad[0].size(); i++)
{
double val = 0.0;
// 基的个数,公式(10)
for (size_t j = 0; j < polyGrad.size(); j++)
val = val + (polyGrad[j][i] * wei[j]);
// 公式(4) 的绝对值内部
temp[i] = val - Cg[i];
temp1[i] = val + Cg[i];
}
// 近似公式(4)
for (size_t i = 0; i < alf.size(); i++)
{
const double sqSigma = obj.sigma * obj.sigma;
const double pos = ((1 + alf[i]) / 2) * exp(-1.0 * 0.5 * (temp[i] * temp[i]) / sqSigma);
const double neg = ((1 - alf[i]) / 2) * exp(-1.0 * 0.5 * (temp1[i] * temp1[i]) / sqSigma);
G_pos[i] = pos;
G_neg[i] = neg;
}
// 近似公式(12)(14)
for (size_t i = 0; i < G_pos.size(); i++)
EXPsum[i] = G_pos[i] + G_neg[i];
for (size_t i = 0; i < EXPsum.size(); i++)
temp2[i] = (EXPsum[i] == 0) ? 1.0 : 0.0;
for (size_t i = 0; i < G_pos.size(); i++)
EXPterm[i] = (G_pos[i] - G_neg[i]) / (EXPsum[i] + temp2[i]);
// 更新权重
for (int i = 0; i < int(polyGrad.size()); i++)
{
double val1 = 0.0;
for (int j = 0; j < int(polyGrad[0].size()); j++)
{
val1 = val1 + (Mt.at(i, j) * EXPterm[j]);
}
wei1[i] = val1;
}
// 替换权重
for (size_t i = 0; i < wei.size(); i++)
wei[i] = wei1[i];
// 公式(11)
E = obj.energyCalcu(Cg, polyGrad, wei);
if (iterCount > maxIter)
break;
}
Mat Gray = Mat::zeros(img.size(), CV_32FC1);
obj.grayImContruct(wei, img, Gray);
Gray.convertTo(dst, CV_8UC1, 255);
/////////////////////////////////// Contrast Boosting /////////////////////////////////
Mat lab;
cvtColor(I, lab, COLOR_BGR2Lab);
vector lab_channel;
split(lab, lab_channel);
dst.copyTo(lab_channel[0]); // 仅仅替换 L 通道
merge(lab_channel, lab);
cvtColor(lab, color_boost, COLOR_Lab2BGR);
}
double Decolor::energyCalcu(const vector &Cg, const vector < vector > &polyGrad, const vector &wei) const
{
const size_t size = polyGrad[0].size();
vector energy(size);
vector temp(size);
vector temp1(size);
// 公式(11)两个 exp {} 中的部分
// 公式中的 l(x,y)
for (size_t i = 0; i < polyGrad[0].size(); i++)
{
double val = 0.0;
// 公式中的 i
for (size_t j = 0; j < polyGrad.size(); j++)
val = val + (polyGrad[j][i] * wei[j]);
temp[i] = val - Cg[i];
temp1[i] = val + Cg[i];
}
// 注意这里和公式(11)不同,左右两边的比重都为 1
for (size_t i = 0; i < polyGrad[0].size(); i++)
energy[i] = -1.0 * log(exp(-1.0 * pow(temp[i], 2) / sigma) + exp(-1.0 * pow(temp1[i], 2) / sigma));
double sum = 0.0;
// 把整幅图的能量(代价)都相加起来
for (size_t i = 0; i < polyGrad[0].size(); i++)
sum += energy[i];
// 平均
return (sum / polyGrad[0].size());
}
Decolor::Decolor()
{
kernelx = Mat(1, 2, CV_32FC1);
kernely = Mat(2, 1, CV_32FC1);
kernelx.at(0, 0) = 1.0; // 1., -1.
kernelx.at(0, 1) = -1.0;
kernely.at(0, 0) = 1.0; // 1.; -1.
kernely.at(1, 0) = -1.0;
order = 2; // degree
sigma = 0.02f;
}
vector Decolor::product(const vector &comb, const double initRGB[3])
{
vector res(comb.size());
// 从 comb 容器中,逐个取出 vec3 和 rgb 进行点乘
for (size_t i = 0; i < comb.size(); i++)
{
double dp = 0.0;
for (int j = 0; j < 3; j++)
dp = dp + (comb[i][j] * initRGB[j]);
res[i] = dp;
}
// 返回每个 vec3 点乘的结果
return res;
}
// 计算横向的单通道梯度图
void Decolor::singleChannelGradx(const Mat &img, Mat &dest) const
{
const int w = img.size().width;
// kernels.cols/2-1, kernelx.rows/2-1
// 调整卷积图像的锚点,默认是 (-1,-1)
// Σ kernel(x',y')*src(x+x'-anchor.x, y+y'-anchor.y)
const Point anchor(kernelx.cols - kernelx.cols / 2 - 1, kernelx.rows - kernelx.rows / 2 - 1);
filter2D(img, dest, -1, kernelx, anchor, 0.0, BORDER_CONSTANT); // 超出边界的地方用常数填充
dest.col(w - 1) = 0.0;// 最右侧设置为 0
}
// 计算纵向的单通道梯度图
void Decolor::singleChannelGrady(const Mat &img, Mat &dest) const
{
const int h = img.size().height;
const Point anchor(kernely.cols - kernely.cols / 2 - 1, kernely.rows - kernely.rows / 2 - 1);
filter2D(img, dest, -1, kernely, anchor, 0.0, BORDER_CONSTANT);
dest.row(h - 1) = 0.0;
}
// 计算横向和纵向的梯度(转置)并合并到一个容器中
void Decolor::gradvector(const Mat &img, vector &grad) const
{
Mat dest;
Mat dest1;
singleChannelGradx(img, dest);
singleChannelGrady(img, dest1);
// 得到转置的单通道梯度图
Mat d_trans = dest.t();
Mat d1_trans = dest1.t();
const int height = d_trans.size().height;
const int width = d_trans.size().width;
// 把两张梯度图合并到一个容器当中(前:横向,后:纵向)
// OpenCV 源码中此处有越界问题(难以置信)
grad.resize(width * height * 2);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
grad[i * width + j] = d_trans.at(i, j);
const int offset = width * height;
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
grad[offset + i * width + j] = d1_trans.at(i, j);
}
// 计算 CIELab 空间的颜色对比度
void Decolor::colorGrad(const Mat &img, vector &Cg) const
{
Mat lab;
// 转换到 CIELab 颜色空间
cvtColor(img, lab, COLOR_BGR2Lab);
vector lab_channel;
split(lab, lab_channel);
vector ImL;
vector Ima;
vector Imb;
// 分别计算 Lab 三个通道的梯度图
gradvector(lab_channel[0], ImL);
gradvector(lab_channel[1], Ima);
gradvector(lab_channel[2], Imb);
Cg.resize(ImL.size());
// 计算颜色对比度(Color Contrast)
for (size_t i = 0; i < ImL.size(); i++)
{
const double res = sqrt(pow(ImL[i], 2) + pow(Ima[i], 2) + pow(Imb[i], 2)) / 100;
Cg[i] = res;
}
}
// 构造一个 vec3 张量,并添加到 comb 容器中
void Decolor::addVector(vector &comb, int &idx, int r, int g, int b)
{
comb.push_back(Vec3i(r, g, b));
idx++;
}
// 保存梯度容器到一个容器的容器
void Decolor::addToVectorPoly(vector < vector > &polyGrad, const vector &curGrad, int &idx1)
{
polyGrad.push_back(curGrad);
idx1++;
}
// 和论文上公式不同
void Decolor::weakOrder(const Mat &src, vector &alf) const
{
const int h = src.size().height;
const int w = src.size().width;
cv::Mat img;
if ((h + w) > 800)
{
const double sizefactor = double(800) / (h + w);
resize(src, img, Size(cvRound(w * sizefactor), cvRound(h * sizefactor)));
}
else
img = src;
Mat curIm = Mat(img.size(), CV_32FC1);
vector rgb_channel;
split(img, rgb_channel);// 又对图像进行了分裂
vector Rg, Gg, Bg;
gradvector(rgb_channel[2], Rg); // 计算 RGB 三个通道的梯度图
gradvector(rgb_channel[1], Gg);
gradvector(rgb_channel[0], Bg);
vector t1(Rg.size()), t2(Rg.size()), t3(Rg.size());
vector tmp1(Rg.size()), tmp2(Rg.size()), tmp3(Rg.size());
const double level = .05;
// 和 level 、-level 进行比较
for (size_t i = 0; i < Rg.size(); i++)
{
t1[i] = (Rg[i] > level) ? 1.0 : 0.0;
t2[i] = (Gg[i] > level) ? 1.0 : 0.0;
t3[i] = (Bg[i] > level) ? 1.0 : 0.0;
tmp1[i] = (Rg[i] < -1.0 * level) ? 1.0 : 0.0;
tmp2[i] = (Gg[i] < -1.0 * level) ? 1.0 : 0.0;
tmp3[i] = (Bg[i] < -1.0 * level) ? 1.0 : 0.0;
}
alf.resize(Rg.size());
for (size_t i = 0; i < Rg.size(); i++)
alf[i] = (t1[i] * t2[i] * t3[i]);
for (size_t i = 0; i < Rg.size(); i++)
alf[i] -= tmp1[i] * tmp2[i] * tmp3[i];
}
// 构造 polynomial space 每个基的梯度图,还有得到 CIELab 颜色空间的对比度,以及 polynomial space 的基
void Decolor::gradSystem(const Mat &src, vector < vector < double > > &polyGrad,
vector < double > &Cg, vector &comb) const
{
int h = src.size().height;
int w = src.size().width;
cv::Mat img;
// 如果宽高和超过一定大小则进行缩放
if ((h + w) > 800)
{
const double sizefactor = double(800) / (h + w);
resize(src, img, Size(cvRound(w * sizefactor), cvRound(h * sizefactor)));
}
else
img = src;
h = img.size().height;
w = img.size().width;
colorGrad(img, Cg);
// 将一副图像映射到 polynomial space
Mat curIm = Mat(img.size(), CV_32FC1);
vector rgb_channel;
split(img, rgb_channel); // 得到 BGR 三个通道
int idx = 0, idx1 = 0;
for (int r = 0; r <= order; r++)
for (int g = 0; g <= order; g++)
for (int b = 0; b <= order; b++)
{
if ((r + g + b) <= order && (r + g + b) > 0)
{
// 保存 polynomial space 的基
addVector(comb, idx, r, g, b);
// 每个 polynomial space 的基(r, g, b) 都要对整张图像进行计算(w*h 大小)
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
// 映射每一个 rgb 像素
curIm.at(i, j) =
pow(rgb_channel[2].at(i, j), r) *
pow(rgb_channel[1].at(i, j), g) *
pow(rgb_channel[0].at(i, j), b);
vector curGrad;
gradvector(curIm, curGrad);
// 保存每个基计算的梯度图
addToVectorPoly(polyGrad, curGrad, idx1);
}
}
}
void Decolor::weightUpdateMatrix(const vector < vector > &poly, const vector &Cg, Mat &X)
{
// 容器转为矩阵
const int size = static_cast(poly.size());
const int size0 = static_cast(poly[0].size());
Mat P = Mat(size, size0, CV_32FC1);
for (int i = 0; i < size; i++)
for (int j = 0; j < size0; j++)
P.at(i, j) = static_cast(poly[i][j]);
// 转置
const Mat P_trans = P.t();
Mat B = Mat(size, size0, CV_32FC1);
for (int i = 0; i < size; i++)
{
for (int j = 0, end = int(Cg.size()); j < end; j++)
B.at(i, j) = static_cast(poly[i][j] * Cg[j]);
}
// 得到一个方阵,大小为 size*size
Mat A = P * P_trans;
// 求解线性方程组,这里的 X 应该是论文公式(14)的部分
// cv::solve -- https://docs.opencv.org/3.1.0/d2/de8/group__core__array.html#ga12b43690dbd31fed96f213eefead2373
// DECOMP_NORMAL -- https://docs.opencv.org/3.1.0/d2/de8/group__core__array.html#gaaf9ea5dcc392d5ae04eacb9920b9674c
// 这意味着求解的方程是 src1 T⋅src1⋅dst = src1 T src2,而不是原始方程 src1⋅dst = src2
solve(A, B, X, DECOMP_NORMAL);
//---------------------
// DECOMP_LU(LU分解)
// http://blog.csdn.net/myhaspl/article/details/49450743
// DECOMP_CHOLESKY(CHOLESKY分解)
// http://blog.csdn.net/acdreamers/article/details/44656847
// DECOMP_EIG(EIG分解)
// DECOMP_SVD(SVD分解)
// http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html
// DECOMP_QR(QR分解)
// http://blog.sina.com.cn/s/blog_3f41287a0101ke2s.html
//---------------------
}
void Decolor::weightInit(const vector &comb, vector &wei)
{
double initRGB[3] = { .33, .33, .33 };
// 通过 polynomial space 的基和 rgb 系数进行点乘,对 weight 进行初始化
wei = product(comb, initRGB);
vector sum(comb.size());
for (size_t i = 0; i < comb.size(); i++)
sum[i] = (comb[i][0] + comb[i][1] + comb[i][2]);
// 除了 r,g,b 这三种基,其他基的权重初始化为 0
for (size_t i = 0; i < sum.size(); i++)
{
if (sum[i] == 1)
wei[i] = wei[i] * double(1);
else
wei[i] = wei[i] * double(0);
}
sum.clear();
}
// 将迭代出各个基的权重和各个基相乘,并把结果累加到原灰度上
void Decolor::grayImContruct(vector &wei, const Mat &img, Mat &Gray) const
{
const int h = img.size().height;
const int w = img.size().width;
vector rgb_channel;
split(img, rgb_channel);
int kk = 0;
for (int r = 0; r <= order; r++)
for (int g = 0; g <= order; g++)
for (int b = 0; b <= order; b++)
if ((r + g + b) <= order && (r + g + b) > 0)
{
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
Gray.at(i, j) = Gray.at(i, j) +
static_cast(wei[kk]) * pow(rgb_channel[2].at(i, j), r) * pow(rgb_channel[1].at(i, j), g) *
pow(rgb_channel[0].at(i, j), b);
kk = kk + 1; // 遍历各个基
}
// 找出最值,并调整归一化便于显示
double minval, maxval;
minMaxLoc(Gray, &minval, &maxval);
Gray -= minval;
Gray /= maxval - minval;
}