读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器

上一篇:垃圾回收算法:https://blog.csdn.net/pcwl1206/article/details/84061589

本篇文章转发自:https://blog.csdn.net/chjttony/article/details/7883748

第3篇:垃圾收集器

1  Serial收集器

2  ParNew收集器

3  Parallel  Scavenge收集器

4  Serial  Old收集器

5  Parallel  Old收集器

6  CMS收集器

7  G1收集器

8  需要注意的几点

8.1  对象优先在Eden分配

8.2  大对象直接进入老年代

8.3  长期存活的对象将进入老年代

8.4  动态对象年龄判断

8.5  空间分配担保

G1垃圾收集器介绍

G1 总览

G1 工作流程

G1 参数配置和最佳实践

各种GC的触发时机(When)

GC类型

FULL GC触发条件详解

参考及推荐


 


Java堆内存被划分为新生代和年老代两部分,新生代主要使用复制和标记-清除垃圾回收算法,年老代主要使用标记-整理垃圾回收算法,因此java虚拟中针对新生代和年老代分别提供了多种不同的垃圾收集器,JDK1.7中Sun HotSpot虚拟机的垃圾收集器如下:

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第1张图片

说明:图中两两连线的收集器都是可以搭配使用的。

再开始讲解具体的垃圾收集器之前,先明确一个观点:虽然我们是在对各个收集器进行比较,但并非为了挑出一个最好的收集器。因为直到现在为止还没有最好的收集器出现,更加没有万能的收集器,所以我们选择的只是对具体应用最合适的收集器。

  • 设计上的权衡

往下看之前,我们需要先分清楚这里的两个概念:并发和并行

  • 并行:多个垃圾回收线程同时工作,而不是只有一个垃圾回收线程在工作
  • 并发:垃圾回收线程和应用程序线程同时工作,应用程序不需要挂起

在设计或选择垃圾回收算法的时候,我们需要作出以下几个权衡:

  • 串行 vs 并行

    串行收集的情况,即使是多核 CPU,也只有一个核心参与收集。使用并行收集器的话,垃圾收集的工作将分配给多个线程在不同的 CPU 上同时进行。并行可以让收集工作更快,缺点是带来的复杂性和内存碎片问题。

  • 并发 vs Stop-the-world

    当 stop-the-world 垃圾收集器工作的时候,应用将完全被挂起。与之相对的,并发收集器在大部分工作中都是并发进行的,也许会有少量的 stop-the-world。

    stop-the-world 垃圾收集器比并发收集器简单很多,因为应用挂起后堆空间不再发生变化,它的缺点是在某些场景下挂起的时间我们是不能接受的(如 web 应用)。

    相应的,并发收集器能够降低挂起时间,但是也更加复杂,因为在收集的过程中,也会有新的垃圾产生,同时,需要有额外的空间用于在垃圾收集过程中应用程序的继续使用。

  • 压缩 vs 不压缩 vs 复制

    当垃圾收集器标记出内存中哪些是活的,哪些是垃圾对象后,收集器可以进行压缩,将所有活的对象移到一起,这样新的内存分配就可以在剩余的空间中进行了。经过压缩后,分配新对象的内存空间是非常简单快速的。

    相对的,不压缩的收集器只会就地释放空间,不会移动存活对象。优点就是快速完成垃圾收集,缺点就是潜在的碎片问题。通常,这种情况下,分配对象空间会比较慢比较复杂,比如为新的一个大对象找到合适的空间。

    还有一个选择就是复制收集器,将活的对象复制到另一块空间中,优点就是原空间被清空了,这样后续分配对象空间非常迅速,缺点就是需要进行复制操作和占用额外的空间。

1  Serial收集器

Serial是最基本、历史最悠久的垃圾收集器,使用复制算法,曾经是JDK1.3.1之前新生代唯一的垃圾收集器。

Serial是一个单线程的收集器,它不仅仅只会使用一个CPU或一条线程去完成垃圾收集工作,并且在进行垃圾收集的同时,必须暂停其他所有的工作线程,直到垃圾收集结束。

Serial垃圾收集器虽然在收集垃圾过程中需要暂停所有其他的工作线程,但是它简单高效,对于限定单个CPU环境来说,没有线程交互的开销,可以获得最高的单线程垃圾收集效率,因此Serial垃圾收集器依然是java虚拟机运行在Client模式下默认的新生代垃圾收集器。

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第2张图片

2  ParNew收集器

ParNew垃圾收集器其实是Serial收集器的多线程版本,也使用复制算法,除了使用多线程进行垃圾收集之外,其余的行为和Serial收集器完全一样,ParNew垃圾收集器在垃圾收集过程中同样也要暂停所有其他的工作线程。

ParNew收集器默认开启和CPU数目相同的线程数,可以通过-XX:ParallelGCThreads参数来限制垃圾收集器的线程数。

ParNew虽然是除了多线程外和Serial收集器几乎完全一样,但是ParNew垃圾收集器是很多java虚拟机运行在Server模式下新生代的默认垃圾收集器。

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第3张图片

3  Parallel  Scavenge收集器

Parallel Scavenge收集器也是一个新生代垃圾收集器,同样使用复制算法,也是一个多线程的垃圾收集器,它重点关注的是程序达到一个可控制的吞吐量(Thoughput,CPU用于运行用户代码的时间/CPU总消耗时间,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)),高吞吐量可以最高效率地利用CPU时间,尽快地完成程序的运算任务,主要适用于在后台运算而不需要太多交互的任务。

Parallel Scavenge收集器提供了两个参数用于精准控制吞吐量:

a.-XX:MaxGCPauseMillis:控制最大垃圾收集停顿时间,是一个大于0的毫秒数。

b.-XX:GCTimeRation:直接设置吞吐量大小,是一个大于0小于100的整数,也就是程序运行时间占总时间的比率,默认值是99,即垃圾收集运行最大1%(1/(1+99))的垃圾收集时间。

Parallel Scavenge是吞吐量优先的垃圾收集器,它还提供一个参数:-XX:+UseAdaptiveSizePolicy,这是个开关参数,打开之后就不需要手动指定新生代大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRation)、新生代晋升年老代对象年龄(-XX:PretenureSizeThreshold)等细节参数,虚拟机会根据当前系统运行情况收集性能监控信息,动态调整这些参数以达到最大吞吐量,这种方式称为GC自适应调节策略,自适应调节策略也是ParallelScavenge收集器与ParNew收集器的一个重要区别。

新生代Parallel Scavenge收集器与ParNew收集器工作原理类似,都是多线程的收集器,都使用的是复制算法,在垃圾收集过程中都需要暂停所有的工作线程。

新生代Parallel Scavenge/ParNew与年老代Serial Old搭配垃圾收集过程图:

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第4张图片

4  Serial  Old收集器

Serial Old是Serial垃圾收集器年老代版本,它同样是个单线程的收集器,使用标记-整理算法,这个收集器也主要是运行在Client默认的java虚拟机默认的年老代垃圾收集器。

在Server模式下,主要有两个用途:

a.在JDK1.5之前版本中与新生代的Parallel Scavenge收集器搭配使用。

b.作为年老代中使用CMS收集器的后备垃圾收集方案。

新生代Serial与年老代Serial Old搭配垃圾收集过程图:

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第5张图片

5  Parallel  Old收集器

Parallel Old收集器是Parallel Scavenge的年老代版本,使用多线程的标记-整理算法,在JDK1.6才开始提供。

在JDK1.6之前,新生代使用ParallelScavenge收集器只能搭配年老代的Serial Old收集器,只能保证新生代的吞吐量优先,无法保证整体的吞吐量,Parallel Old正是为了在年老代同样提供吞吐量优先的垃圾收集器,如果系统对吞吐量要求比较高,可以优先考虑新生代Parallel Scavenge和年老代Parallel Old收集器的搭配策略。

新生代Parallel Scavenge和年老代Parallel Old收集器搭配运行过程图:

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第6张图片

6  CMS收集器

Concurrent mark sweep(CMS)收集器是一种年老代垃圾收集器,其最主要目标是获取最短垃圾回收停顿时间,和其他年老代使用标记-整理算法不同,它使用多线程的标记-清除算法。

最短的垃圾收集停顿时间可以为交互比较高的程序提高用户体验,CMS收集器是Sun HotSpot虚拟机中第一款真正意义上并发垃圾收集器,它第一次实现了让垃圾收集线程和用户线程同时工作。

CMS工作机制相比其他的垃圾收集器来说更复杂,整个过程分为以下4个阶段:

a.初始标记:只是标记一下GC Roots能直接关联的对象,速度很快,仍然需要暂停所有的工作线程。

b.并发标记:进行GC Roots跟踪的过程,和用户线程一起工作,不需要暂停工作线程。

c.重新标记:为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,仍然需要暂停所有的工作线程。

d.并发清除:清除GC Roots不可达对象,和用户线程一起工作,不需要暂停工作线程。

由于耗时最长的并发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作,所以总体上来看CMS收集器的内存回收和用户线程是一起并发地执行。

CMS收集器工作过程:

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第7张图片

CMS收集器有以下三个不足:

1、CMS收集器对CPU资源非常敏感,其默认启动的收集线程数=(CPU数量+3)/4,在用户程序本来CPU负荷已经比较高的情况下,如果还要分出CPU资源用来运行垃圾收集器线程,会使得CPU负载加重。

2、CMS无法处理浮动垃圾(Floating Garbage),可能会导致Concurrent ModeFailure失败而导致另一次Full GC。由于CMS收集器和用户线程并发运行,因此在收集过程中不断有新的垃圾产生,这些垃圾出现在标记过程之后,CMS无法在本次收集中处理掉它们,只好等待下一次GC时再将其清理掉,这些垃圾就称为浮动垃圾。

CMS垃圾收集器不能像其他垃圾收集器那样等待年老代机会完全被填满之后再进行收集,需要预留一部分空间供并发收集时的使用,可以通过参数-XX:CMSInitiatingOccupancyFraction来设置年老代空间达到多少的百分比时触发CMS进行垃圾收集,默认是68%。

如果在CMS运行期间,预留的内存无法满足程序需要,就会出现一次ConcurrentMode Failure失败,此时虚拟机将启动预备方案,使用Serial Old收集器重新进行年老代垃圾回收。

3、CMS收集器是基于标记-清除算法,因此不可避免会产生大量不连续的内存碎片,如果无法找到一块足够大的连续内存存放对象时,将会触发因此Full GC。CMS提供一个开关参数-XX:+UseCMSCompactAtFullCollection,用于指定在Full GC之后进行内存整理,内存整理会使得垃圾收集停顿时间变长,CMS提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,用于设置在执行多少次不压缩的Full GC之后,跟着再来一次内存整理。

7  G1收集器

Garbage first垃圾收集器是目前垃圾收集器理论发展的最前沿成果,相比与CMS收集器,G1收集器两个最突出的改进是:

1、基于标记-整理算法,不产生内存碎片;

2、可以非常精确控制停顿时间,在不牺牲吞吐量前提下,实现低停顿垃圾回收。

G1收集器避免全区域垃圾收集,它把堆内存划分为大小固定的多个独立区域(Region),并且跟踪这些区域的垃圾收集进度,同时在后台维护一个优先级列表,每次根据所允许的收集时间,优先回收垃圾最多的区域。

区域划分优先级区域回收机制,确保G1收集器可以在有限时间获得最高的垃圾收集效率。

G1收集器的运作大致分为下面4个步骤:

1、初始标记:只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at  Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这阶段需要停顿线程,但耗时很短;

2、并发标记:从GC Roots开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行;

3、最终标记:为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered  Set  Logs里面,最终标记阶段需要把Remembered  Set  Logs的数据合并到Remembered  Set中,这阶段可停顿线程,但可并行处理;

4、筛选回收:首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划。这阶段将停顿用户线程以提高收集效率。

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第8张图片

Java虚拟机常用的垃圾收集器相关参数如下:

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第9张图片

java虚拟机的-XX:+PrintGCDetails参数可以打印垃圾收集器的日志信息。

-verbose:gc可以查看Java虚拟机垃圾收集结果。

8  需要注意的几点

8.1  对象优先在Eden分配

大多数情况下,对象在新生代Eden区中分配。当Eden区中没有足够的空间进行分配时,虚拟机将发起一次GC。

新生代GC与老年代GC:

1、新生代GC(Minor  GC):指发生在新生代的垃圾收集动作,因为Java对象大多都是朝生夕灭的特性,所以Minor  GC非常频繁,一般回收速度也比较快;

2、老年代GC(Major  GC / Full  GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor  GC(但并非绝对的,在Parallel  Scavenge收集器的收集策略里就有直接进行Major  GC的策略选择过程)。Major  GC的速度一般会比Minor  GC慢10倍以上。

8.2  大对象直接进入老年代

所谓的大对象是指,需要大量连续内存空间的Java对象,最典型的大对象就是那种很长的字符串以及数组。

经常出现大对象导致内存还有不少空间时就提前触发垃圾收集以获取足够的连续空间来”安置“它们。为了避免在Eden区及两个Survivor区之间发生大量的内存复制,虚拟机提供了一个-XX:PretenureSizeThreshold参数,令大于这个设置值的对象直接在老年代中分配。

8.3  长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应该放在新生代,哪些对象应该放到老年代中。为了做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在Eden区出生并经过第一次Minor  GC后仍然存活,并且能被Survivor容纳的话,将移动到Survivor空间中,并且对象年龄设为1.对象在Survivor区中每”熬过“一次Minor  GC,年龄就增加1岁,当它的年龄增加到一定程度(默认15岁),就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold设置。

8.4  动态对象年龄判断

为了更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升到老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无需等到MaxTenuringThreshold中要求的年龄。

8.5  空间分配担保

在发生Minor  GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor  GC可以确保是安全的。如果不成立,则虚拟机会查看HandlePromotionFailure设置值是否允许担保失败。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次Minor  GC,尽管这次Minor  GC是有风险的;如果小于,或者HandlePromotionFaliure设置不允许冒险,那这时也要改为进行一次Full  GC。




G1垃圾收集器介绍

转载自:G1垃圾收集器介绍:https://blog.csdn.net/a724888/article/details/78764006

G1 的主要关注点在于达到可控的停顿时间,在这个基础上尽可能提高吞吐量,这一点非常重要。

G1 被设计用来长期取代 CMS 收集器,和 CMS 相同的地方在于,它们都属于并发收集器,在大部分的收集阶段都不需要挂起应用程序。区别在于,G1 没有 CMS 的碎片化问题(或者说不那么严重),同时提供了更加可控的停顿时间。

如果你的应用使用了较大的堆(如 6GB 及以上)而且还要求有较低的垃圾收集停顿时间(如 0.5 秒),那么 G1 是你绝佳的选择,是时候放弃 CMS 了。

阅读建议:本文力求用简单的话介绍清楚 G1 收集器,但是并不会重复介绍每一个细节,所以希望读者了解其他几个收集器的工作过程,尤其是 CMS 收集器。

G1 总览

首先是内存划分上,之前介绍的分代收集器将整个堆分为年轻代、老年代和永久代,每个代的空间是确定的。

而 G1 将整个堆划分为一个个大小相等的小块(每一块称为一个 region),每一块的内存是连续的。和分代算法一样,G1 中每个块也会充当 Eden、Survivor、Old 三种角色,但是它们不是固定的,这使得内存使用更加地灵活。

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第10张图片

执行垃圾收集时,和 CMS 一样,G1 收集线程在标记阶段和应用程序线程并发执行,标记结束后,G1 也就知道哪些区块基本上是垃圾,存活对象极少,G1 会先从这些区块下手,因为从这些区块能很快释放得到很大的可用空间,这也是为什么 G1 被取名为 Garbage-First 的原因。

这里只不过是先介绍些概念,没看懂没关系,往下看

在 G1 中,目标停顿时间非常非常重要,用 -XX:MaxGCPauseMillis=200 指定期望的停顿时间。

G1 使用了停顿预测模型来满足用户指定的停顿时间目标,并基于目标来选择进行垃圾回收的区块数量。G1 采用增量回收的方式,每次回收一些区块,而不是整堆回收。

我们要知道 G1 不是一个实时收集器,它会尽力满足我们的停顿时间要求,但也不是绝对的,它基于之前垃圾收集的数据统计,估计出在用户指定的停顿时间内能收集多少个区块。

注意:G1 有和应用程序一起运行的并发阶段,也有 stop-the-world 的并行阶段。但是,Full GC 的时候还是单线程运行的,所以我们应该尽量避免发生 Full GC,后面我们也会介绍什么时候会触发 Full GC。

G1 内存占用

注:这里不那么重要。

G1 比 ParallelOld 和 CMS 会需要更多的内存消耗,那是因为有部分内存消耗于簿记(accounting)上,如以下两个数据结构:

  • Remembered Sets:每个区块都有一个 RSet,用于记录进入该区块的对象引用(如区块 A 中的对象引用了区块 B,区块 B 的 Rset 需要记录这个信息),它用于实现收集过程的并行化以及使得区块能进行独立收集。总体上 Remembered Sets 消耗的内存小于 5%。
  • Collection Sets:将要被回收的区块集合。GC 时,在这些区块中的对象会被复制到其他区块中,总体上 Collection Sets 消耗的内存小于 1%。

G1 工作流程

前面啰里啰嗦说了挺多的,唯一要记住的就是,G1 的设计目标就是尽力满足我们的目标停顿时间上的要求。

本节介绍 G1 的收集过程,G1 收集器主要包括了以下 4 种操作:

  • 1、年轻代收集
  • 2、并发收集,和应用线程同时执行
  • 3、混合式垃圾收集
  • *、必要时的 Full GC

接下来,我们进行一一介绍。

年轻代收集

首先,我们来看下 G1 的堆结构:

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第11张图片

年轻代中的垃圾收集流程(Young GC):

读书笔记 ---- 《深入理解Java虚拟机》---- 第3篇:垃圾收集器_第12张图片

我们可以看到,年轻代收集概念上和之前介绍的其他分代收集器大差不差的,但是它的年轻代会动态调整。

Old GC / 并发标记周期

接下来是 Old GC 的流程(含 Young GC 阶段),其实把 Old GC 理解为并发周期是比较合理的,不要单纯地认为是清理老年代的区块,因为这一步和年轻代收集也是相关的。下面我们介绍主要流程:

  1. 初始标记:stop-the-world,它伴随着一次普通的 Young GC 发生,然后对 Survivor 区(root region)进行标记,因为该区可能存在对老年代的引用。

    因为 Young GC 是需要 stop-the-world 的,所以并发周期直接重用这个阶段,虽然会增加 CPU 开销,但是停顿时间只是增加了一小部分。

  2. 扫描根引用区:扫描 Survivor 到老年代的引用,该阶段必须在下一次 Young GC 发生前结束。

    这个阶段不能发生年轻代收集,如果中途 Eden 区真的满了,也要等待这个阶段结束才能进行 Young GC。

  3. 并发标记:寻找整个堆的存活对象,该阶段可以被 Young GC 中断。

    这个阶段是并发执行的,中间可以发生多次 Young GC,Young GC 会中断标记过程

  4. 重新标记:stop-the-world,完成最后的存活对象标记。使用了比 CMS 收集器更加高效的 snapshot-at-the-beginning (SATB) 算法。

    Oracel 的资料显示,这个阶段会回收完全空闲的区块

  5. 清理:清理阶段真正回收的内存很少。

到这里,G1 的一个并发周期就算结束了,其实就是主要完成了垃圾定位的工作,定位出了哪些分区是垃圾最多的。

混合垃圾回收周期

并发周期结束后是混合垃圾回收周期,不仅进行年轻代垃圾收集,而且回收之前标记出来的老年代的垃圾最多的部分区块。

混合垃圾回收周期会持续进行,直到几乎所有的被标记出来的分区(垃圾占比大的分区)都得到回收,然后恢复到常规的年轻代垃圾收集,最终再次启动并发周期。

Full GC

到这里我们已经说了年轻代收集、并发周期、混合回收周期了,大家要熟悉这几个阶段的工作。

下面我们来介绍特殊情况,那就是会导致 Full GC 的情况,也是我们需要极力避免的:

  1. concurrent mode failure:并发模式失败,CMS 收集器也有同样的概念。G1 并发标记期间,如果在标记结束前,老年代被填满,G1 会放弃标记。

    这个时候说明

    • 堆需要增加了,
    • 或者需要调整并发周期,如增加并发标记的线程数量,让并发标记尽快结束
    • 或者就是更早地进行并发周期,默认是整堆内存的 45% 被占用就开始进行并发周期。
  2. 晋升失败:并发周期结束后,是混合垃圾回收周期,伴随着年轻代垃圾收集,进行清理老年代空间,如果这个时候清理的速度小于消耗的速度,导致老年代不够用,那么会发生晋升失败。

    说明混合垃圾回收需要更迅速完成垃圾收集,也就是说在混合回收阶段,每次年轻代的收集应该处理更多的老年代已标记区块。

  3. 疏散失败:年轻代垃圾收集的时候,如果 Survivor 和 Old 区没有足够的空间容纳所有的存活对象。这种情况肯定是非常致命的,因为基本上已经没有多少空间可以用了,这个时候会触发 Full GC 也是很合理的。

    最简单的就是增加堆大小

  4. 大对象分配失败,我们应该尽可能地不创建大对象,尤其是大于一个区块大小的那种对象。

简单小结

看完上面的 Young GC 和 Old GC 等,很多读者可能还是很懵的,这里说几句不严谨的白话文帮助读者进行理解:

首先,最好不要把上面的 Old GC 当做是一次 GC 来看,而应该当做并发标记周期来理解,虽然它确实会释放出一些内存。

并发标记结束后,G1 也就知道了哪些区块是最适合被回收的,那些完全空闲的区块会在这这个阶段被回收。如果这个阶段释放了足够的内存出来,其实也就可以认为结束了一次 GC。

我们假设并发标记结束了,那么下次 GC 的时候,还是会先回收年轻代,如果从年轻代中得到了足够的内存,那么结束;过了几次后,年轻代垃圾收集不能满足需要了,那么就需要利用之前并发标记的结果,选择一些活跃度最低的老年代区块进行回收。直到最后,老年代会进入下一个并发周期。

那么什么时候会启动并发标记周期呢?这个是通过参数控制的,下面马上要介绍这个参数了,此参数默认值是 45,也就是说当堆空间使用了 45% 后,G1 就会进入并发标记周期。

G1 参数配置和最佳实践

G1 调优的目标是尽量避免出现 Full GC,其实就是给老年代足够的空间,或相对更多的空间。

有以下几点我们可以进行调整的方向:

  • 增加堆大小,或调整老年代和年轻代的比例,这个很好理解
  • 增加并发周期的线程数量,其实就是为了加快并发周期快点结束
  • 让并发周期尽早开始,这个是通过设置堆使用占比来调整的(默认 45%)
  • 在混合垃圾回收周期中回收更多的老年代区块

G1 的很重要的目标是达到可控的停顿时间,所以很多的行为都以这个目标为出发点开展的。

我们通过设置 -XX:MaxGCPauseMillis=N 来指定停顿时间(单位 ms,默认 200ms),如果没有达到这个目标,G1 会通过各种方式来补救:调整年轻代和老年代的比例,调整堆大小,调整晋升的年龄阈值,调整混合垃圾回收周期中处理的老年代的区块数量等等。

当然了,调整每个参数满足了一个条件的同时往往也会引入另一个问题,比如为了降低停顿时间,我们可以减小年轻代的大小,可是这样的话就会增加年轻代垃圾收集的频率。如果我们减少混合垃圾回收周期处理的老年代区块数量,虽然可以更容易满足停顿时间要求,可是这样就会增加 Full GC 的风险等等。

下面介绍最常用也是最基础的一些参数的设置,涉及到更高级的调优参数设置,请读者自行参阅其他资料。

参数介绍:

  • -XX:+UseG1GC

    使用 G1 收集器

  • -XX:MaxGCPauseMillis=200

    指定目标停顿时间,默认值 200 毫秒。

    在设置 -XX:MaxGCPauseMillis 值的时候,不要指定为平均时间,而应该指定为满足 90% 的停顿在这个时间之内。记住,停顿时间目标是我们的目标,不是每次都一定能满足的。

  • -XX:InitiatingHeapOccupancyPercent=45

    整堆使用达到这个比例后,触发并发 GC 周期,默认 45%。

    如果要降低晋升失败的话,通常可以调整这个数值,使得并发周期提前进行

  • -XX:NewRatio=n

    老年代/年轻代,默认值 2,即 1/3 的年轻代,2/3 的老年代

    不要设置年轻代为固定大小,否则:

    • G1 不再需要满足我们的停顿时间目标
    • 不能再按需扩容或缩容年轻代大小
  • -XX:SurvivorRatio=n

    Eden/Survivor,默认值 8,这个和其他分代收集器是一样的

  • -XX:MaxTenuringThreshold =n

    从年轻代晋升到老年代的年龄阈值,也是和其他分代收集器一样的

  • -XX:ParallelGCThreads=n

    并行收集时候的垃圾收集线程数

  • -XX:ConcGCThreads=n

    并发标记阶段的垃圾收集线程数

    增加这个值可以让并发标记更快完成,如果没有指定这个值,JVM 会通过以下公式计算得到:

    ConcGCThreads=(ParallelGCThreads + 2) / 4^3

  • -XX:G1ReservePercent=n

    堆内存的预留空间百分比,默认 10,用于降低晋升失败的风险,即默认地会将 10% 的堆内存预留下来。

  • -XX:G1HeapRegionSize=n

    每一个 region 的大小,默认值为根据堆大小计算出来,取值 1MB~32MB,这个我们通常指定整堆大小就好了。




各种GC的触发时机(When)

GC类型

说到GC类型,就更有意思了,为什么呢,因为业界没有统一的严格意义上的界限,也没有严格意义上的GC类型,都是左边一个教授一套名字,右边一个作者一套名字。为什么会有这个情况呢,因为GC类型是和收集器有关的,不同的收集器会有自己独特的一些收集类型。所以作者在这里引用R大关于GC类型的介绍,作者觉得还是比较妥当准确的。如下:

  • Partial GC:并不收集整个GC堆的模式
    • Young GC(Minor GC):只收集young gen的GC
    • Old GC:只收集old gen的GC。只有CMS的concurrent collection是这个模式
    • Mixed GC:收集整个young gen以及部分old gen的GC。只有G1有这个模式
  • Full GC(Major GC):收集整个堆,包括young gen、old gen、perm gen(如果存在的话)等所有部分的模式。

触发时机

上面大家也看到了,GC类型分分类是和收集器有关的,那么当然了,对于不同的收集器,GC触发时机也是不一样的,作者就针对默认的serial GC来说:

  • young GC:当young gen中的eden区分配满的时候触发。注意young GC中有部分存活对象会晋升到old gen,所以young GC后old gen的占用量通常会有所升高。
  • full GC:当准备要触发一次young GC时,如果发现统计数据说之前young GC的平均晋升大小比目前old gen剩余的空间大,则不会触发young GC而是转为触发full GC(因为HotSpot VM的GC里,除了CMS的concurrent collection之外,其它能收集old gen的GC都会同时收集整个GC堆,包括young gen,所以不需要事先触发一次单独的young GC);或者,如果有perm gen的话,要在perm gen分配空间但已经没有足够空间时,也要触发一次full GC;或者System.gc()、heap dump带GC,默认也是触发full GC。

FULL GC触发条件详解

除直接调用System.gc外,触发Full GC执行的情况有如下四种。

1. 旧生代空间不足

旧生代空间只有在新生代对象转入及创建为大对象、大数组时才会出现不足的现象,当执行Full GC后空间仍然不足,则抛出如下错误:

java.lang.OutOfMemoryError: Java heap space 

为避免以上两种状况引起的Full GC,调优时应尽量做到让对象在Minor GC阶段被回收、让对象在新生代多存活一段时间及不要创建过大的对象及数组。

2. Permanet Generation空间满

Permanet Generation中存放的为一些class的信息等,当系统中要加载的类、反射的类和调用的方法较多时,Permanet Generation可能会被占满,在未配置为采用CMS GC的情况下会执行Full GC。如果经过Full GC仍然回收不了,那么JVM会抛出如下错误信息:

java.lang.OutOfMemoryError: PermGen space 

为避免Perm Gen占满造成Full GC现象,可采用的方法为增大Perm Gen空间或转为使用CMS GC。

3. CMS GC时出现promotion failed和concurrent mode failure

对于采用CMS进行旧生代GC的程序而言,尤其要注意GC日志中是否有promotion failed和concurrent mode failure两种状况,当这两种状况出现时可能会触发Full GC。

promotion failed是在进行Minor GC时,survivor space放不下、对象只能放入旧生代,而此时旧生代也放不下造成的;concurrent mode failure是在执行CMS GC的过程中同时有对象要放入旧生代,而此时旧生代空间不足造成的。

应对措施为:增大survivor space、旧生代空间或调低触发并发GC的比率,但在JDK 5.0+、6.0+的版本中有可能会由于JDK的bug29导致CMS在remark完毕后很久才触发sweeping动作。对于这种状况,可通过设置-XX: CMSMaxAbortablePrecleanTime=5(单位为ms)来避免。

4. 统计得到的Minor GC晋升到旧生代的平均大小大于旧生代的剩余空间

这是一个较为复杂的触发情况,Hotspot为了避免由于新生代对象晋升到旧生代导致旧生代空间不足的现象,在进行Minor GC时,做了一个判断,如果之前统计所得到的Minor GC晋升到旧生代的平均大小大于旧生代的剩余空间,那么就直接触发Full GC。

例如程序第一次触发Minor GC后,有6MB的对象晋升到旧生代,那么当下一次Minor GC发生时,首先检查旧生代的剩余空间是否大于6MB,如果小于6MB,则执行Full GC。

当新生代采用PS GC时,方式稍有不同,PS GC是在Minor GC后也会检查,例如上面的例子中第一次Minor GC后,PS GC会检查此时旧生代的剩余空间是否大于6MB,如小于,则触发对旧生代的回收。

除了以上4种状况外,对于使用RMI来进行RPC或管理的Sun JDK应用而言,默认情况下会一小时执行一次Full GC。可通过在启动时通过- java -Dsun.rmi.dgc.client.gcInterval=3600000来设置Full GC执行的间隔时间或通过-XX:+ DisableExplicitGC来禁止RMI调用System.gc。

总结一下就是:

 Minor GC ,Full GC 触发条件

Minor GC触发条件:当Eden区满时,触发Minor GC。

Full GC触发条件:

(1)调用System.gc时,系统建议执行Full GC,但是不必然执行

(2)老年代空间不足

(3)方法去空间不足

(4)通过Minor GC后进入老年代的平均大小大于老年代的可用内存

(5)由Eden区、From Space区向To Space区复制时,对象大小大于To Space可用内存,则把该对象转存到老年代,且老年代的可用内存小于该对象大小


参考及推荐:

1、JVM垃圾回收基本原理和算法:https://blog.csdn.net/a724888/article/details/77981592

2、垃圾回收器详解:https://blog.csdn.net/a724888/article/details/78764006

你可能感兴趣的:(Java虚拟机(JVM),搞定Java虚拟机)