- 目标检测(object detection)
加油吧zkf
目标检测目标检测人工智能计算机视觉
目标检测作为计算机视觉的核心技术,在自动驾驶、安防监控、医疗影像等领域发挥着不可替代的作用。本文将系统讲解目标检测的概念、原理、主流模型、常见数据集及应用场景,帮助读者构建对这一技术的完整认知。一、目标检测的核心概念目标检测(ObjectDetection)是指在图像或视频中自动定位并识别出所有感兴趣的目标的技术。它需要解决两个核心问题:分类(Classification):确定图像中每个目标的类
- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- 跨机构医疗影像解析的协议协同架构——基于MCP协议的“巴比伦塔困境“突破
百态老人
架构
在医疗影像领域,不同医疗机构间因系统异构性形成的"巴比伦塔困境",本质上是协议标准碎片化与数据语义隔阂的叠加效应。通过融合MCP协议、DICOM标准扩展与新型云架构,协和医院PACS系统与301医院AI模型间的直接解析得以实现。这一技术突破包含以下核心创新层级:一、协议转换层的架构创新1.多协议语义网关基于MCP协议构建的智能协议转换层,实现不同DICOM实现版本的动态适配:
- 深度学习之迁移学习
路溪非溪
人工智能迁移学习机器学习
认识迁移学习迁移学习(TransferLearning)是机器学习中的一种重要技术,其核心思想是将在一个任务上学习到的知识(模型参数、特征表示等),迁移应用到另一个相关但不同的任务中,从而提升新任务的学习效率和性能,尤其是在新任务数据有限的情况下。一、迁移学习的核心动机传统机器学习通常要求为每个新任务收集大量标注数据并从头训练模型,但现实中面临以下挑战:数据稀缺:例如医疗影像分析(罕见疾病样本少)
- 魔都AI医疗哪家强?全景揭秘科技创新与未来钱景!
引言上海作为中国科技创新的先锋城市,正在AI医疗领域崭露头角。根据2024年12月的数据,上海拥有34家专注于AI药物研发的公司,占全国预临床研究的60%和临床试验的47%。这些公司利用深度学习、大语言模型(LLM)和计算机视觉等技术,革新药物发现、医疗影像分析和数据治理,推动医疗行业的智能化转型。从全球首个人工智能医院“AgentHospital”到AI驱动的诊断系统,上海的AI医疗生态正在重塑
- 医疗影像诊断新范式:多模态AI在癌症早筛中的落地难题
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站医疗影像诊断新范式:多模态AI在癌症早筛中的落地难题——2025年临床转化瓶颈突破与多中心验证报告残酷现实:FDA2025Q1报告显示,87%的AI影像工具因临床转化失败止步于III期试验破局曙光:斯坦福-梅奥联合研究证实,多模态融合使肺结节良恶性判别AUC提升至0.98(单模态上限0.91)一
- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 5G MEC四大核心挑战技术解析报告
码农老gou
5G5G网络
一、MEC园区部署挑战:数据本地化与低时延接入痛点深度解析数据不出园区:工业质检、医疗影像等敏感业务需数据在本地闭环处理。但运营商基站与企业MEC间若经公网绕行,时延超50ms且存在泄露风险。L2网络局限:传统L2接入网无法实现基站→UPF的智能路由,导致业务流绕行城域网核心节点(平均增加20ms时延)。创新解决方案▍最短路径转发架构(图1)
- 《YOLO11的ONNX推理部署:多语言多架构实践指南》
空云风语
YOLO人工智能深度学习目标跟踪人工智能计算机视觉YOLO
引言:YOLO11与ONNX的相遇在计算机视觉的广袤星空中,目标检测始终是一颗耀眼的明星,其在自动驾驶、智能安防、工业检测、医疗影像分析等诸多领域都有着举足轻重的应用。想象一下,自动驾驶汽车需要实时准确地检测出道路上的车辆、行人、交通标志;智能安防系统要快速识别出监控画面中的异常行为和可疑人员;工业生产线上,需要精准检测产品的缺陷;医疗影像分析中,辅助医生检测病变区域。这些场景都对目标检测技术的准
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- Python爬虫(57)Python数据可视化全攻略:Matplotlib从入门到三维动态图表(8000字实战教程)
一个天蝎座白勺程序猿
Python爬虫入门到高阶实战python爬虫信息可视化
目录背景与需求分析第一章:Matplotlib基础与核心工作流1.1环境配置与基础架构1.2基础图表类型实战1.2.1折线图进阶1.2.2分组柱状图第二章:高阶可视化技术2.1子图矩阵与多面板布局2.2动态可视化与动画第三章:行业案例实战案例1:电商用户行为分析案例2:医疗影像数据可视化第四章:可视化美学与工程优化4.1配色方案实战4.2百万级数据渲染优化第五章:交互式扩展方案5.1Matplot
- 后量子密码学迁移的战略窗口与陷阱
月_o9
python算法人机交互网络安全
后量子密码学迁移的战略窗口与陷阱字数:1040量子计算机对现行公钥密码体系的毁灭性威胁已进入10年倒计时,但迁移风险远超出技术范畴:迫在眉睫的“现在攻击未来”**HarvestNow,DecryptLater**攻击成为国家行为体标配:已确认超过120个APT组织系统性窃取加密数据医疗影像加密数据半衰期达30年,远超量子霸权实现时间表迁移路径的三重断层1.标准割裂危机NIST后量子密码(PQC)标
- 基于OpenCv(开源计算机视觉库)的图像旋转匹配
我在北京coding
计算机视觉opencv人工智能
OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,具有跨平台特性,广泛应用于工业检测、医疗影像分析、自动驾驶、无人机、机器人视觉等多个领域。本项目解决了图像模板匹配时的旋转问题。传统的模板匹配方法往往假设目标模板在搜索图像中的位置和方向与原图完全一致,但在实际应用中,目标可能因视角变化而发生旋转。因此,旋转匹配成为一种必要的技术。
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- 探秘卷积神经网络(CNN):从原理到实战的深度解析
LNL13
cnn人工智能神经网络
在图像识别、视频处理等领域,卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)如同一位“超级侦探”,能够精准捕捉图像中的关键信息,实现对目标的快速识别与分析。从医疗影像诊断到自动驾驶中的路况感知,CNN凭借独特的架构设计和强大的特征提取能力,成为深度学习领域的中流砥柱。接下来,让我们深入探索CNN的奥秘。一、CNN的诞生背景与核心优势传统的神经网络,如多层感知机(ML
- Patch Position Embedding (PPE) 在医疗 AI 中的应用编程分析
Allen_Lyb
数智化教程(第二期)embedding人工智能机器学习健康医疗
一、PPE的核心原理与医疗场景适配性位置编码的本质需求在医疗影像(如CT、MRI、病理切片)中,Transformer需要将图像划分为若干Patch并作为序列输入。但如果不注入空间信息,模型难以区分同一病灶在不同坐标的语义差异。传统的绝对位置编码(如SinusoidalPE)对等距网格有效,却无法灵活适配病灶大小多变、图像分辨率不一的医学场景。PatchPositionEmbedding(PPE)
- 中科亿海微SoM模组——AI图像推理解决方案
随着AI技术的快速发展,AI图像推理作为一种高效、智能的图像处理技术,已成为推动各行业数字化转型和智能化升级的关键。它凭借强大的图像处理和推理能力,能够自动识别、分离和处理图像内容,为各行各业提供精准、高效的图像分析支持。极大提高了医疗影像、自动驾驶、智能安防、农业智能、无人机、人形机器人、物流管理等领域图像处理的效率和质量。本文介绍的中科亿海微基于FPGA+SoC架构的通用AI图像推理模组,主要
- 阿里云大模型AI:开启智能新时代的钥匙
云资源服务商
阿里云人工智能云计算
阿里云大模型AI初印象在当今这个科技迅猛发展的时代,人工智能(AI)无疑已成为最耀眼的明星,深刻地改变着我们生活与工作的方方面面。从智能语音助手到自动驾驶汽车,从医疗影像诊断到金融风险预测,AI技术正以惊人的速度渗透到各个领域,为我们带来前所未有的便利与机遇。在这波澜壮阔的AI发展浪潮中,阿里云大模型AI凭借其卓越的性能、强大的功能以及广泛的应用场景,迅速崛起并占据了举足轻重的地位,吸引着全球无数
- 2025 开发AI软件的应用场景和优势
哲科软件
人工智能
在人工智能技术持续突破的今天,AI软件开发已从实验室走向千行百业的核心战场。本文深入剖析医疗影像诊断、智能制造预测性维护、金融风控决策链等六大落地场景,揭示AI如何通过算法重构业务流程——某三甲医院通过病理AI系统将诊断效率提升4倍,汽车工厂借助缺陷检测模型降低90%质检成本,金融机构利用深度学习拦截98%的欺诈交易。我们不仅解析技术实现路径,更通过20+行业案例验证:当传统行业遇上AI开发,爆发
- 【合集】多种方式桌面应用程序开发
Hi-Jimmy
PythonJavaNode.js桌面应用程序
为什么桌面应用程序很重要最近完成了几篇关于桌面应用程序开发的文章,涉及到C#、Python、NodeJS和Java。现在是B/S的天下,我本人做javaweb开发也已经很多年,但我认为桌面应用程序依然是产品当中必不可少的一部分。桌面应用程序有更高的权限可访问本地文件,可以做大批量上传、拉取,可以做高性能图像渲染(特别是医疗影像),可以与硬件交互等。这些优点足以让桌面应用程序依然充满活力。特点桌面应
- 深度学习目标检测与yolo概述
Tobiue
深度学习目标检测人工智能
1、深度学习目标检测综述目标检测是计算机视觉领域中极为重要的研究课题,其目的是识别图像中的目标对象并准确地确定它们的位置信息。相较于传统的图像分类任务,目标检测不仅需要识别对象的类别(例如人、车、动物等),还需要确定其在图像中的具体位置,通常通过边界框(boundingbox)来表示。目标检测的广泛应用包括安防监控、自动驾驶、医疗影像分析等,因而其研究的重要性日益凸显。1.目标检测的定义目标检测可
- YOLOv8医疗影像 第四章:典型应用场景实现
路飞VS草帽
YOLOv各版本的应用详细说明及代码示例YOLOv8原理与源代码讲解---六大章YOLOv8医疗影像--八大章YOLOpython开发语言典型应用场景实现医疗影像
第四章:典型应用场景实现4.1病灶检测系统(肿瘤/骨折)CT肺结节检测全流程pythonimportpydicomfromglobimportglobimportnumpyasnpclassNoduleDetector:def__init__(self,model_path='yolov8n_nodule.pt'):self.model=YOLO(model_path)self.slice_cac
- 触觉智能RK3576核心板,工业应用之4K超高清HDMI IN视频输入
Industio_触觉智能
瑞芯微核心板开发板HDMIINRK3576RK3576J
在工业自动化、医疗影像、轨道交通、电力调度等行业,对高质量视觉信号的实时捕捉和分析需求日益提高。传统工业相机的低分辨率采集模糊了关键细节,延迟的处理过程导致生产环节无法形成闭环控制,让不同硬件之间的协作障碍重重。触觉智能RK3576核心板凭借4核Cortex-A72+4核Cortex-A53大小核处理器+6Tpos高算力NPU,与触觉智能配套HDMIIN4K视频输入方案加持下,可轻松接入高清工业相
- 目标检测与图像分割:协同分析图像信息
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1计算机视觉领域的重要任务目标检测和图像分割是计算机视觉领域中两个至关重要的任务,它们在许多应用场景中扮演着关键角色,例如自动驾驶、医疗影像分析、机器人视觉等。目标检测旨在识别图像中特定目标的位置和类别,而图像分割则将图像分割成不同的区域,每个区域代表一个特定的对象或部分。1.2从粗粒度到细粒度的图像理解目标检测提供了一种粗粒度的图像理解方式,它能够告诉我们图像中存在哪些目标以及它
- 基于YOLOv10的YCB物体与模型集目标检测应用——玩具、厨房物品、家居物品等目标检测
YOLO实战营
YOLO目标检测目标跟踪ui人工智能计算机视觉
引言目标检测作为计算机视觉中的一个重要领域,已经被广泛应用于自动驾驶、安防监控、医疗影像等多个行业。在这一领域中,深度学习方法,尤其是基于YOLO(YouOnlyLookOnce)系列的目标检测模型,已成为目前最为流行的技术之一。YOLOv10是YOLO系列中的最新版本,它在目标检测精度和速度上均表现出了优异的性能。本文将详细介绍如何使用YOLOv10进行YCBObjectandModelSet数
- 算力安全标准与异构芯片架构演进方向
智能计算研究中心
其他
内容概要随着人工智能、量子计算等前沿技术对算力需求的指数级增长,构建安全可控的算力基础设施已成为全球科技竞争的核心议题。当前算力体系正面临双重挑战:一方面,异构计算架构的快速演进推动了光子计算、神经形态计算等新型计算范式的突破;另一方面,工业互联网、医疗影像等高精度场景对算力可靠性提出了严苛要求。在此背景下,算力安全标准与芯片架构创新正形成双向驱动的技术生态。行业专家指出:"未来三年将是算力安全标
- YOLO 系列模型技术演进:从 YOLOv5 到 YOLOv11 的深度剖析
引言目标检测是计算机视觉领域的一个重要任务,它在许多实际应用中都发挥着关键作用,例如智能安防、自动驾驶、工业自动化和医疗影像分析等。YOLO(YouOnlyLookOnce)系列模型自2015年首次推出以来,以其高效的目标检测能力而广受欢迎。从YOLOv5到YOLOv11,这一系列模型在架构、性能和应用场景上都经历了显著的演进。本文将详细剖析YOLOv5到YOLOv11的每一版本的核心改进,并结合
- 深入剖析AI大模型:用神经网络构建医疗影像辅助诊断系统
chilavert318
熬之滴水穿石人工智能神经网络深度学习
今天以一个具体的场景来说说怎么构建一个神经网络。就拿医疗领域来说,在医疗领域,精准的影像诊断对疾病治疗至关重要。当一位放射科医生面对肺部CT影像时,神经网络正以其独特的"视觉认知"能力,成为辅助诊断的重要工具。以肺部结节检测为例,深入剖析神经网络在医疗影像场景中的完整应用流程,将抽象理论转化为可感知的技术实践。一、场景化理论建模:医疗影像中的神经网络逻辑1、神经元的医学隐喻:结节特征检测器在肺部C
- 可解释性医疗影像算法解析
智能计算研究中心
其他
内容概要在医疗影像分析领域,可解释性算法的核心价值在于建立临床诊断的透明化决策路径。本文通过系统性解构深度学习框架下的技术链条,揭示从数据标注、特征工程到模型评估的全流程透明度构建方法。研究聚焦卷积神经网络(CNN)与注意力机制的双向协同作用,量化分析其在肺结节检测、肿瘤分割等场景中的特征可视化效果。为平衡算法性能与可解释性需求,文中提出基于多维度评估指标的优化框架(见表1),涵盖准确率、召回率、
- 《Image Classification with Classic and Deep Learning Techniques》复现
几何心凉
IT优质推荐深度学习人工智能
1引言图像分类作为计算机视觉领域的核心任务,旨在将输入图像映射到离散化的语义类别标签,广泛应用于人脸识别、自动驾驶、医疗影像诊断、安防监控等场景。传统方法主要依赖手工设计的特征描述子(如SIFT、HOG、LBP)结合浅层模型(如BoVW、Fisher向量、SVM),以其可解释性和低资源消耗见长,但在端到端优化与高级表征能力方面不及深度学习。近年来,卷积神经网络(CNN)在大规模数据集(如Image
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数