pre order和in order的思路相似,通过current==null来判断是入栈还是出栈。
postorder需要记录prev和current的关系:
preordrer
[code]
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list=new ArrayList<Integer>();
if(root==null)return list;
Stack<TreeNode> stack=new Stack<TreeNode>();
TreeNode current=root;
list.add(root.val);
stack.push(root);
while(stack.size()>0)
{
if(current==null)
{
current=stack.pop();
if(current.right!=null)
{
stack.push(current.right);
list.add(current.right.val);
current=current.right;
}
else current=null;
}
else if(current.left!=null)
{
stack.push(current.left);
list.add(current.left.val);
current=current.left;
}
else
{
stack.pop();
if(current.right!=null)
{
stack.push(current.right);
list.add(current.right.val);
current=current.right;
}
else current=null;
}
}
return list;
}
}
inorder
[code]
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list=new ArrayList<Integer>();
if(root==null)return list;
Stack<TreeNode> stack=new Stack<TreeNode>();
stack.push(root);
TreeNode current=root,prev=null;
while(stack.size()>0)
{
if(current==null)
{
current=stack.pop();
list.add(current.val);
if(current.right!=null)
{
stack.push(current.right);
current=current.right;
}
else current=null;
}
else if(current.left!=null)
{
stack.push(current.left);
current=current.left;
}
else
{
stack.pop();
list.add(current.val);
if(current.right!=null)
{
stack.push(current.right);
current=current.right;
}
else current=null;
}
}
return list;
}
}
post order
[我自己的code]
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> list=new ArrayList<Integer>();
if(root==null)return list;
Stack<TreeNode> stack=new Stack<TreeNode>();
stack.push(root);
TreeNode current=root, prev=null;
while(stack.size()>0)
{
if(current==null)current=stack.peek();
if(prev!=null && prev==current.left)
{
if(current.right!=null)
{
stack.push(current.right);
current=current.right;
}
else
{
list.add(current.val);
stack.pop();
prev=current;
current=null;
}
}
else if(prev!=null && prev==current.right)
{
list.add(current.val);
stack.pop();
prev=current;
current=null;
}
else
{
if(current.left!=null)
{
stack.push(current.left);
current=current.left;
}
else if(current.right!=null)
{
stack.push(current.right);
current=current.right;
}
else
{
list.add(current.val);
stack.pop();
prev=current;
current=null;
}
}
}
return list;
}
}
[九章算法的答案]思路差不多
//Iterative
public ArrayList<Integer> postorderTraversal(TreeNode root) {
ArrayList<Integer> result = new ArrayList<Integer>();
Stack<TreeNode> stack = new Stack<TreeNode>();
TreeNode prev = null; // previously traversed node
TreeNode curr = root;
if (root == null) {
return result;
}
stack.push(root);
while (!stack.empty()) {
curr = stack.peek();
if (prev == null || prev.left == curr || prev.right == curr) { // traverse down the tree
if (curr.left != null) {
stack.push(curr.left);
} else if (curr.right != null) {
stack.push(curr.right);
}
} else if (curr.left == prev) { // traverse up the tree from the left
if (curr.right != null) {
stack.push(curr.right);
}
} else { // traverse up the tree from the right
result.add(curr.val);
stack.pop();
}
prev = curr;
}
return result;
}