- yolov5>onnx>ncnn>apk
图像处理大大大大大牛啊
opencv实战代码讲解yoloonnxncnn安卓
一.yolov5pt模型转onnx条件:colabnotebookyolov51.安装环境!pipinstallonnx>=1.7.0#forONNXexport!pipinstallcoremltools==4.0#forCoreMLexport!pipinstallonnx-simplifier2.修改common.py在classFocus下面
- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- 分布式离线计算—Spark—基础介绍
测试开发abbey
人工智能—大数据
原文作者:饥渴的小苹果原文地址:【Spark】Spark基础教程目录Spark特点Spark相对于Hadoop的优势Spark生态系统Spark基本概念Spark结构设计Spark各种概念之间的关系Executor的优点Spark运行基本流程Spark运行架构的特点Spark的部署模式Spark三种部署方式Hadoop和Spark的统一部署摘要:Spark是基于内存计算的大数据并行计算框架Spar
- python ray分布式_取代 Python 多进程!伯克利开源分布式框架 Ray
weixin_39946313
pythonray分布式
Ray由伯克利开源,是一个用于并行计算和分布式Python开发的开源项目。本文将介绍如何使用Ray轻松构建可从笔记本电脑扩展到大型集群的应用程序。并行和分布式计算是现代应用程序的主要内容。我们需要利用多个核心或多台机器来加速应用程序或大规模运行它们。网络爬虫和搜索所使用的基础设施并不是在某人笔记本电脑上运行的单线程程序,而是相互通信和交互的服务的集合。云计算承诺在所有维度上(内存、计算、存储等)实
- OPENCL之SIMT与SIMD在架构上的主要区别是什么?
糯米宝宝
gpuopencv
SIMT(单指令多线程)与SIMD(单指令多数据)在架构上的主要区别体现在以下几个方面:执行单元的组织方式:SIMD:采用的是多数据流架构,即同一条指令同时作用于多个数据元素。这种架构特别适合于多媒体应用等数据密集型运算。SIMT:采用的是多线程架构,即同一条指令由多个线程并行执行。每个线程可以有不同的分支行为和执行路径,从而实现线程级的并行计算。软件暴露的信息:SIMD:向软件公开SIMD宽度(
- Python | 使用Joblib模块加快任务处理速度
python收藏家
pythonpython
在本文中,我们将了解如何通过使用Joblib模块在Python中并行执行代码来大幅减少大型代码的执行时间。Joblib模块简介Joblib是一个用于Python的开源库,它提供了一些用于并行计算和内存映射的工具,旨在提高科学计算和数据分析的效率。Python中的Joblib模块特别用于使用Pipelines并行执行任务,而不是一个接一个地顺序执行任务。Joblib模块允许用户通过利用设备中存在的所
- 【并行计算】Strong scaling和weak Scaling
栏杆拍遍看吴钩
pytorch并行计算
可以从这个角度来区分:StrongScaling在扩展时是壮壮的,即使增加负载,也不需要调整机器。WeakScaling在扩展时是弱弱的,如果要增加负载,也要同步增加机器。Strong的目的是为了知道当前的机器所能够提供的最大并行能力。Weak的目的是为了保证当前的负载均衡性一致的情况下比较不同数量机器的并行效果。
- NUMA架构
weixin_34220623
数据库内存管理操作系统
最近在学习.NET的并行计算技术,学到一个服务器NUMA架构,NUMA架构在中大型系统上一直非常盛行,也是高性能的解决方案,在系统延迟方面表现都很优秀。Windows一向都没有在NUMA架构上有多少表现机会,AMD的多路系统大多也会用在UNIX/Linux上。Intel如期进入了NUMA架构的怀抱,英特尔最新的服务器处理器至强5500是一项重大的结构变革。与上一代至强处理器相比,至强5500采用了
- 模式转变-并行编程方面的设计注意事项
guoxiaoqian8028
并行计算
本文以VisualStudio工具的预发布版为基础。文中的所有信息均有可能发生变更。本文将介绍以下内容:并行计算并发编程性能提高本文使用了以下技术:多线程目录并发和并行结构化多线程数据并行性数据流数据并行性单程序,多数据并发数据结构总结从1986到2002年,微处理器的性能每年提高了52%。这一惊人的技术进步源自晶体管成本依据摩尔法则不断地缩减,以及处理器厂商在工程方面的出色表现。微软的研究员Ji
- CPU服务器如何应对大规模并行计算需求?
Jtti
服务器运维
大规模并行计算是指利用多个处理单元同时处理计算任务,以提高计算效率和缩短完成时间。这种计算方式常用于科学计算、数据分析、机器学习、图像处理等领域,面对海量数据与复杂计算时,传统的串行计算往往显得无能为力。现代CPU通常具备多个核心,这使得它们能够在同一时间内并行执行多个线程或任务。多核处理器可以大幅提升并行计算能力,适合处理大型计算任务。CPU服务器通常配备多级高速缓存(L1、L2、L3),有效减
- 环境安装-1:Python3.8+CUDA11.6.1+cuDNN8.6+Tensorflow-gpu2.6.1
w坐看云起时
环境安装tensorflowpython人工智能
环境配置建议多看几个别人的安装过程的图文,不要着急,慢慢来,我们肯定行,加油!一、知识储备1.CUDACUDA是显卡厂商NVIDIA推出的运算平台。CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。(来自百度词条)2.cuDNNNVIDIACUDA深度神经网络库(cuDNN)是一个GPU加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反
- ISP(图像信号处理器)是什么?
FoGoiN
嵌入式硬件单片机物联网
由于刚接触到开发版,认识到了图像处理器(imageprocessor),又名imageprocessingengine,imageprocessingunit(IPU),imagesignalprocessor(ISP)。和电脑的GPU类似,通常采并行计算。功能:Bayertransformation图像传感器(就是光电转换器)中的光电二极管(吸收光子产生电流)其实是无法识别颜色的,为了能够识别颜
- MTCNN训练
迷若烟雨
人脸识别tensorflow深度学习caffe
MTCNN是当前效果最好的开源人脸检测算法之一,作者只提供了训练好的模型以及matlab部署代码,其训练和优化却没有放出来,引发了很多好事者复现如果只是要部署的话可以使用MTCNN,其提供了部署全平台实现,包括C++、python、ncnn和tensorflow,还有加速版本和opencv直接加载版本,是所有版本中的集大成者如果想了解算法原理,可以参考MTCNN_Step_by_Step本文的训练
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- Python 多线程和多进程用法
SmallerFL
Python相关python服务器linux多进程多线程
文章目录1.Python多进程1.1常见用法1.创建进程2.进程池3.进程间通信4.进程同步1.2结合进度条显示2.Python多线程2.1常见用法1.使用线程池2.2结合进度条显示1.Python多进程1.1常见用法multiprocessing是Python标准库中的一个模块,用于在多核或多处理器环境中并行执行任务。它提供了一种便捷的方法来创建和管理多个进程,以实现并行计算。multiproc
- 《C++与新兴硬件技术的完美融合:开启未来科技新篇章》
程序猿阿伟
c++科技开发语言
在科技飞速发展的今天,新兴硬件技术不断涌现,为软件开发带来了前所未有的机遇和挑战。C++作为一种强大而高效的编程语言,如何更好地与这些新兴硬件技术结合,成为了众多开发者关注的焦点。首先,在与GPU(图形处理单元)的结合方面,C++展现出了巨大的潜力。GPU拥有强大的并行计算能力,能够快速处理大量的数据和复杂的计算任务。通过CUDA和OpenCL等技术,C++开发者可以充分利用GPU的性能优势,实现
- Unity3D UI Toolkit数据动态绑定详解
Thomas_YXQ
uijava开发语言Unity游戏开发前端c#
前言在Unity3D中,ComputeShader是一种强大的工具,用于在GPU上执行并行计算任务,这些任务通常涉及大量的数据处理,如图像处理、物理模拟等。然而,由于GPU的并行特性,ComputeShader中的线程(也称为工作项)之间默认是不进行同步的。这意味着每个线程都是独立运行的,且无法直接访问其他线程的数据或执行状态,除非通过特定的机制进行通信。对惹,这里有一个游戏开发交流小组,大家可以
- PyTorch深度学习实战(26)—— PyTorch与Multi-GPU
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能
当拥有多块GPU时,可以利用分布式计算(DistributedComputation)与并行计算(ParallelComputation)的方式加速网络的训练过程。在这里,分布式是指有多个GPU在多台服务器上,并行指一台服务器上的多个GPU。在工作环境中,使用这两种方式加速模型训练是非常重要的技能。本文将介绍PyTorch中分布式与并行的常见方法,读者需要注意这二者的区别,并关注它们在使用时的注意
- C语言中的多线程编程:POSIX线程库(Pthreads)入门与实战(一)
JJJ69
学习C语言吧开发语言c语言
目录一、引言背景介绍文章目的与读者定位二、夽线程基础概念线程与进程的关系并发与并行的区别多线程的优势与挑战三、POSIX线程库(Pthreads)简介POSIX标准与Pthreads规范Pthreads的兼容性与移植性总结一、引言背景介绍随着计算机硬件技术的飞速发展,多核处理器已经成为现代计算设备的标准配置。这种架构变革使得单个处理器芯片能够容纳多个执行核心,从而显著提升了并行计算能力。面对这样的
- 并行计算的艺术:PyTorch中torch.cuda.nccl的多GPU通信精粹
2401_85763639
pytorch人工智能python
并行计算的艺术:PyTorch中torch.cuda.nccl的多GPU通信精粹在深度学习领域,模型的规模和复杂性不断增长,单GPU的计算能力已难以满足需求。多GPU并行计算成为提升训练效率的关键。PyTorch作为灵活且强大的深度学习框架,通过torch.cuda.nccl模块提供了对NCCL(NVIDIACollectiveCommunicationsLibrary)的支持,为多GPU通信提供
- HPC&AI并行计算集群Slurm作业调度系统对通用资源(GRES)的调度
技术瘾君子1573
并行计算AI并行计算Slurm调度系统MPS管理GPU管理MIG多实例管理GPU切片
一、概述Slurm支持定义和调度任意通用RESources的功能(GRES)。为特定GRES类型启用了其他内置功能,包括图形处理单元(GPU)、CUDA多进程服务(MPS)设备,并通过可扩展的插件机制进行分片。二、配置默认情况下,群集的配置中未启用任何GRES。您必须在slurm.conf配置文件中明确指定要管理的GRES。的配置参数兴趣是GresTypes和Gres。有关详细信息,请参见slur
- CUDA指南-CUDA简介与开发环境搭建
小虾米欸
CUDA指南CUDA
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的并行计算平台和编程模型,它允许开发者利用NVIDIAGPU进行高效的通用计算任务。以下是对CUDA的详细介绍:GPU与CPU的不同GPU(图形处理单元)与CPU(中央处理单元)在设计和功能上有所不同。GPU拥有更多的处理核心,专为并行处理设计,适合执行大量数据的并行计算任务。相比之下,CPU拥有较少的
- 【赵渝强老师】Spark中的RDD
赵渝强老师
大数据技术spark大数据分布式
RDD(ResilientDistributedDataset)叫做弹性分布式数据集,它是Spark中最基本、也是最重要的的数据模型。它由分区组成,每个分区被一个Spark的Worker从节点处理,从而支持分布式的并行计算。RDD通过检查点Checkpoint的方式提供自动容错的功能,并且具有位置感知性调度和可伸缩的特性。通过RDD也提供缓存的机制,可以极大地提高数据处理的速度。 视频讲解如
- 曼巴大战变形金刚:号称超越Transformer架构的Mamba架构是什么?
Chauvin912
大模型行业调研科普transformer架构深度学习
曼巴大战变形金刚:号称超越Transformer架构的Mamba架构是什么?Mamba是一种新兴的深度学习架构,旨在解决长序列数据的建模问题。它通过将状态空间模型(StateSpaceModels,SSM)与选择性机制、并行计算等方法相结合,实现了高效的长序列处理。这篇博客将深入探讨Mamba架构的各个组成部分,解释其背后的原理。1.状态空间模型(SSM)1.1状态空间模型的基本原理状态空间模型是
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- 【GPU驱动开发】-GPU架构简介
怪怪王
GPU驱动驱动开发GPUAIchatgpt架构
前言不必害怕未知,无需恐惧犯错,做一个Creator!GPU(GraphicsProcessingUnit,图形处理单元)是一种专门用于处理图形和并行计算的处理器。GPU系统架构通常包括硬件和软件层面的组件。一、总体流程应用程序请求图形操作:应用程序通过图形API(如OpenGL、Vulkan)发送图形操作请求。图形API调用GPU驱动程序:图形API将请求传递给GPU驱动程序。GPU驱动程序解释
- Transformer结构介绍和Pyotrch代码实现
肆十二
Pytorch语法transformer深度学习人工智能
Transformer结构介绍和Pyotrch代码实现关注B站查看更多手把手教学:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)基本结构介绍Transformer结构是近年来自然语言处理(NLP)领域的重要突破,它完全基于注意力机制(AttentionMechanism)来实现,克服了传统RNN模型无法并行计算以及容易丢失长距离依赖信息的问题。Transformer
- 什么是Rust 语言
chunmiao3032
rust开发语言后端
Rust是一种专注于性能和内存安全的系统编程语言,其设计目标包括提供:零开销抽象、移动语义、内存安全、线程无数据竞争、类型安全和实时gc等功能。Rust使用RAII(ResourceAcquisitionIsInitialization)管理资源,通过所有权系统以编译时检查内存安全。它强调零开销的抽象和安全的并行计算。Rust语言的前景非常广阔,包括以下几个方面:系统编程:由于Rust的出色性能和
- 170基于matlab的DNCNN图像降噪
顶呱呱程序
matlab工程应用matlab开发语言图像降噪处理DNCNN
基于matlab的DNCNN图像降噪,网络分为三部分,第一部分为Conv+Relu(一层),第二部分为Conv+BN+Relu(若干层),第三部分为Conv(一层),网络层数为17或者20层。网络学习的是图像残差,也就是带噪图像和无噪图像差值,损失函数采用的MSE。程序已调通,可直接运行。170matlabDNCNN图像降噪处理(xiaohongshu.com)
- CUDA与CUDNN 关系
XF鸭
小知识caffe深度学习人工智能
CUDA与cuDNN1、什么是CUDACUDA(ComputeUnifiedDeviceArchitecture),是显卡厂商NVIDIA推出的运算平台。CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。2、什么是CUDNNNVIDIAcuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIAcuDNN可以集成到更高级别的机器学
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,