【opencv】动态背景下运动目标检测 FAST+SURF+FLANN配准差分 17/12/13更新图片

FAST检测特征点+SURF描述特征点速度上要比SURF在多尺度下检测特征点后描述要快的多

在自己的电脑上做了两种实验的对比,通过VS性能分析可以看到结果

配置I5 2.7GHZ X64 VS2012 OPENCV249

代码中大津法二值化可以直接用opencv提供的大津法接口


代码功能

SURF提取描述

FAST提取SURF描述

特征点提取

24.2%

0.9%

特征点描述

25%

14.7%

特征点匹配

12.2%

8.9%



检测效果:


原软件界面:

【opencv】动态背景下运动目标检测 FAST+SURF+FLANN配准差分 17/12/13更新图片_第1张图片


怪自己手残,不应该中文命名的,调试会出现很多问题

// 动态背景目标探测Dlg.cpp : 实现文件
//

#include "stdafx.h"
#include "动态背景目标探测.h"
#include "动态背景目标探测Dlg.h"
#include "afxdialogex.h"
#include 
#include  

using namespace cv;
using namespace std;

 

CString strFilePath; //视频文件名
VideoCapture capture;//视频源
Mat image01,image02;
bool bExit,bGetTemplat;
bool bFirst = true;//第一次SURF循环

Point g_pt(-1,-1);
C动态背景目标探测Dlg *dlg;
int picSize = 912;

#ifdef _DEBUG
#define new DEBUG_NEW
#endif


// C动态背景目标探测Dlg 对话框



C动态背景目标探测Dlg::C动态背景目标探测Dlg(CWnd* pParent /*=NULL*/)
	: CDialogEx(C动态背景目标探测Dlg::IDD, pParent)
{
	m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

void C动态背景目标探测Dlg::DoDataExchange(CDataExchange* pDX)
{
	CDialogEx::DoDataExchange(pDX);
}

BEGIN_MESSAGE_MAP(C动态背景目标探测Dlg, CDialogEx)
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
    ON_BN_CLICKED(IDC_CHOSEFILE, &C动态背景目标探测Dlg::OnBnClickedChosefile)
    ON_BN_CLICKED(IDC_TARGET, &C动态背景目标探测Dlg::OnBnClickedTarget)
    ON_BN_CLICKED(IDC_STOP, &C动态背景目标探测Dlg::OnBnClickedStop)
END_MESSAGE_MAP()


// C动态背景目标探测Dlg 消息处理程序

BOOL C动态背景目标探测Dlg::OnInitDialog()
{
	CDialogEx::OnInitDialog();

	// 设置此对话框的图标。当应用程序主窗口不是对话框时,框架将自动
	//  执行此操作
	SetIcon(m_hIcon, TRUE);			// 设置大图标
	SetIcon(m_hIcon, FALSE);		// 设置小图标

	// TODO: 在此添加额外的初始化代码

    HWND hWnd ;
    HWND hParent;

    namedWindow("pic", WINDOW_AUTOSIZE);
    hWnd = (HWND)cvGetWindowHandle("pic");
    hParent = ::GetParent(hWnd);
    ::SetParent(hWnd, GetDlgItem(IDC_PIC)->m_hWnd);
    ::ShowWindow(hParent, SW_HIDE);

    namedWindow("diff", WINDOW_AUTOSIZE);
    hWnd = (HWND)cvGetWindowHandle("diff");
    hParent = ::GetParent(hWnd);
    ::SetParent(hWnd, GetDlgItem(IDC_DIFF)->m_hWnd);
    ::ShowWindow(hParent, SW_HIDE);

    SetDlgItemInt(IDC_THRESHOLD, 21);
    dlg = (C动态背景目标探测Dlg*)theApp.m_pMainWnd;

    bExit = 0;
    bGetTemplat = 0;

	return TRUE;  // 除非将焦点设置到控件,否则返回 TRUE
}

// 如果向对话框添加最小化按钮,则需要下面的代码
//  来绘制该图标。对于使用文档/视图模型的 MFC 应用程序,
//  这将由框架自动完成。

void C动态背景目标探测Dlg::OnPaint()
{
	if (IsIconic())
	{
		CPaintDC dc(this); // 用于绘制的设备上下文

		SendMessage(WM_ICONERASEBKGND, reinterpret_cast(dc.GetSafeHdc()), 0);

		// 使图标在工作区矩形中居中
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// 绘制图标
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialogEx::OnPaint();
	}
}

//当用户拖动最小化窗口时系统调用此函数取得光标
//显示。
HCURSOR C动态背景目标探测Dlg::OnQueryDragIcon()
{
	return static_cast(m_hIcon);
}



void C动态背景目标探测Dlg::OnBnClickedChosefile()
{
    // 设置过滤器   
    TCHAR szFilter[] = _T("|所有文件(*.*)|*.*||");   
    // 构造打开文件对话框   
    CFileDialog fileDlg(TRUE, _T(""), NULL, 0, szFilter, this);   
      
    // 显示打开文件对话框   
    if (IDOK == fileDlg.DoModal())   
    {   
        // 如果点击了文件对话框上的“打开”按钮,则将选择的文件路径显示到编辑框里   
        strFilePath = fileDlg.GetPathName();   

        capture.open(string(strFilePath));
        bExit = 0;
        bFirst = TRUE;
    }   
}

//对轮廓按面积降序排列  
bool biggerSort(vector v1, vector v2)  
{  
    return contourArea(v1)>contourArea(v2);  
}  

void on_MouseHandle(int event, int x, int y, int flags, void* param)
{
    Mat& image = *(cv::Mat*) param;
    switch(event)
    {
        //左键按下消息
    case EVENT_LBUTTONDOWN: 
        {
            g_pt = Point(x, y);
            CString str;
            
            CRect rect;
            dlg->GetDlgItem(IDC_PIC)->GetClientRect(&rect);
            str.Format("%d,%d", int(g_pt.x*picSize/rect.right), int(g_pt.y*picSize/rect.bottom));
            dlg->SetDlgItemText(IDC_POS, str);

            g_pt.x = int(g_pt.x*picSize/rect.right);
            g_pt.y = int(g_pt.y*picSize/rect.bottom);

            bGetTemplat = TRUE;
            break;
        }
    case EVENT_RBUTTONDOWN:
        {
            bGetTemplat = FALSE;
            break;
        }
        break;
    }
}

//大津法求阈值函数
int otsuThreshold(IplImage* img)
{
	int T = 0;//阈值
	int height = img->height;
	int width  = img->width;
	int step      = img->widthStep;
	int channels  = img->nChannels;
	uchar* data  = (uchar*)img->imageData;
	double gSum0;//第一类灰度总值
	double gSum1;//第二类灰度总值
	double N0 = 0;//前景像素数
	double N1 = 0;//背景像素数
	double u0 = 0;//前景像素平均灰度
	double u1 = 0;//背景像素平均灰度
	double w0 = 0;//前景像素点数占整幅图像的比例为ω0
	double w1 = 0;//背景像素点数占整幅图像的比例为ω1
	double u = 0;//总平均灰度
	double tempg = -1;//临时类间方差
	double g = -1;//类间方差
	double Histogram[256]={0};// = new double[256];//灰度直方图
	double N = width*height;//总像素数
	for(int i=0;i255? 255:temp;
			Histogram[(int)temp]++;
		} 
	}
	//计算阈值
	for (int i = 0;i<256;i++)
	{
		gSum0 = 0;
		gSum1 = 0;
		N0 += Histogram[i];         
		N1 = N-N0;
		if(0==N1)break;//当出现前景无像素点时,跳出循环
		w0 = N0/N;
		w1 = 1-w0;
		for (int j = 0;j<=i;j++)
		{
			gSum0 += j*Histogram[j];
		}
		u0 = gSum0/N0;
		for(int k = i+1;k<256;k++)
		{
			gSum1 += k*Histogram[k];
		}
		u1 = gSum1/N1;
		//u = w0*u0 + w1*u1;
		g = w0*w1*(u0-u1)*(u0-u1);
		if (tempg target;
    Mat imageGray1,imageGray2;


    namedWindow("pic");
    setMouseCallback("pic",on_MouseHandle,(void*)&image02temp);

    FastFeatureDetector fast(130);//FAST特征点检测
    //SurfFeatureDetector surfDetector(4000);//SURF特征点检测

    vector keyPoint1,keyPoint2;//两幅图中检测到的特征点
   
    SurfDescriptorExtractor SurfDescriptor;//SURF特征点描述 
    Mat imageDesc1,imageDesc2;

    while (!bExit)
    {
        if (!bGetTemplat)
        {
            target.clear();

            if (bFirst)//第一次处理
            {
                //前一帧图
                capture >> imagetemp1;
                if (imagetemp1.empty())
                {
                    bExit = TRUE;
					bFirst = TRUE;
					bGetTemplat = FALSE;
                    break;
                }
                //这里因为我处理需要,从原视频中抠出picSize*picSize部分
                if (imagetemp1.cols > picSize + 200 && imagetemp1.rows > picSize)
                {
                    image01 = imagetemp1(Rect(200, 0, picSize, picSize));
                }
                else
                {
                    image01 = imagetemp1.clone();
                }
                
                //后一帧图
                capture >> imagetemp2;
                capture >> imagetemp2;
                capture >> imagetemp2;
                if (imagetemp2.empty())
                {
                    bExit = TRUE;
					bFirst = TRUE;
					bGetTemplat = FALSE;
                    break;
                }
                //这里因为我处理需要,从原视频中抠出picSize*picSize部分
                if (imagetemp2.cols > picSize + 200 && imagetemp2.rows > picSize)
                {
                    image02 = imagetemp2(Rect(200, 0, picSize, picSize));
                }
                else
                {
                    image02 = imagetemp2.clone();
                }


                //灰度图转换 
                cvtColor(image01,image1,CV_RGB2GRAY);  
                cvtColor(image02,image2,CV_RGB2GRAY);  

                //提取特征点  
                fast.detect(image1,keyPoint1);//FAST特征点提取
                fast.detect(image2,keyPoint2);//FAST特征点提取
                //surfDetector.detect(image1,keyPoint1);//SURF特征点提取
                //surfDetector.detect(image2,keyPoint2);//SURF特征点提取    

                //特征点描述,为下边的特征点匹配做准备    
                SurfDescriptor.compute(image1,keyPoint1,imageDesc1);//SURF特征点描述    
                SurfDescriptor.compute(image2,keyPoint2,imageDesc2);//SURF特征点描述       

                bFirst = false;
            }
            else//对于后面的处理,只需要提取一帧图像的特征点就可以了,把上次的结果给这次的第一帧
            {
                image01 = image02.clone();
                imageDesc1 = imageDesc2.clone();
                keyPoint1 = keyPoint2;

                //后一帧图
                capture >> imagetemp2;
                capture >> imagetemp2;
                capture >> imagetemp2;
                if (imagetemp2.empty())
                {
                    bExit = TRUE;
					bFirst = TRUE;
					bGetTemplat = FALSE;
                    break;
                }
                //这里因为我处理需要,从原视频中抠出picSize*picSize部分
                if (imagetemp2.cols > picSize + 200 && imagetemp2.rows > picSize)
                {
                    image02 = imagetemp2(Rect(200, 0, picSize, picSize));
                }
                else
                {
                    image02 = imagetemp2.clone();
                }

                //灰度图转换 
                cvtColor(image02,image2,CV_RGB2GRAY);  

                double time0 = static_cast(getTickCount());//开始计时,需要计时的是FAST-SURF配准的时间

                //提取特征点       
                fast.detect(image2,keyPoint2);
                //surfDetector.detect(image2,keyPoint2);    

                //特征点描述,为下边的特征点匹配做准备      
                SurfDescriptor.compute(image2,keyPoint2,imageDesc2);      

                //获得匹配特征点,并提取最优配对     
                FlannBasedMatcher matcher;  
                vector matchePoints;    
                matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());  
                sort(matchePoints.begin(),matchePoints.end()); //特征点排序    

                vector imagePoints1,imagePoints2;      
                if (matchePoints.size()<50)//对特征点的数量做一个限制
                {
                    continue;
                }

                //筛除误匹配特征点
                for(int i=0; iGetDlgItemInt(IDC_THRESHOLD);
                Mat se2=getStructuringElement(MORPH_RECT, Size(dialate_size,dialate_size));
                morphologyEx(temp, temp, MORPH_DILATE, se2);


                vector> contours;
                findContours(temp, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);

                //轮廓数量的筛选
                if (contours.size()<1)
                {
                    continue;
                }

                //std::sort(contours.begin(), contours.end(), biggerSort);//轮廓大小的排序,这里注释了因为计算费事

                float m_BiLi = 0.8;//由于两幅图配准,边缘不会一致,因此对原图大小0.8的比例中搜索检测到的目标

                for (int k = 0; k < contours.size(); k++)
                {
                    Rect bomen = boundingRect(contours[k]);

                    //省略由于配准带来的边缘无效信息
                    if (bomen.x > image02temp.cols * (1 - m_BiLi) && bomen.y > image02temp.rows * (1 - m_BiLi) 
                        && bomen.x + bomen.width < image02temp.cols * m_BiLi && bomen.y + bomen.height < image02temp.rows * m_BiLi
                        /*&& contourArea(contours[k]) > contourArea(contours[0])/10*/
                        && contourArea(contours[k]) > 900 && contourArea(contours[k]) < 30000)
                    {
                        rectangle(image02temp, bomen, Scalar(0,0,255), 4, 8, 0);
                        target.push_back(bomen);
                    }

                }

                //输出帧率
                time0 = ((double)getTickCount()-time0)/getTickFrequency();
                dlg->SetDlgItemInt(IDC_EDIT_FRE, (int)(1/time0), 1);

                //显示图像
                CRect rect;
                dlg -> GetDlgItem(IDC_DIFF)->GetClientRect(&rect);
                resize(temp, temp, cv::Size(rect.Width(), rect.Height()));
                imshow("diff", temp);

                dlg -> GetDlgItem(IDC_PIC)->GetClientRect(&rect);
                resize(image02temp, image02temp, cv::Size(rect.Width(), rect.Height()));
                imshow("pic", image02temp);

                waitKey(20);  
            }          
        }
        else//鼠标点击 选择目标,可以进行跟踪(这里没写跟踪部分,只写了点选部分)
        {
            int minIndex;
            int minDis = 9999999;
            int aimDis;

            //距离与点选的坐标最近的目标是哪个
            for (int i = 0; i < target.size(); i++)
            {
                aimDis = sqrt((target[i].x + target[i].width/2 - g_pt.x) * (target[i].x + target[i].width/2 - g_pt.x) + (target[i].y + target[i].height/2 - g_pt.y) * (target[i].y + target[i].height/2 - g_pt.y));
                if (aimDis < minDis)
                {
                    minDis = aimDis;
                    minIndex = i;
                }
            }

            //绘制点选目标
            rectangle(image02, target[minIndex], Scalar(0,255,255), 4, 8, 0);

            //显示点选目标
            CRect rect;
            Mat image02show;
            dlg -> GetDlgItem(IDC_PIC)->GetClientRect(&rect);
            resize(image02, image02show, cv::Size(rect.Width(), rect.Height()));
            imshow("pic", image02show);

            waitKey(20);  
        }
        
    }
    return 0;  
}  


void C动态背景目标探测Dlg::OnBnClickedTarget()
{
    AfxBeginThread(ThreadFunc, this); //启动线程
}


void C动态背景目标探测Dlg::OnBnClickedStop()
{
    capture.release();
    bExit = TRUE;
	bGetTemplat = FALSE;
}

                FAST(image1, keyPoint1, dlg->GetDlgItemInt(IDC_EDIT_FAST));
                FAST(image2, keyPoint2, dlg->GetDlgItemInt(IDC_EDIT_FAST));
                //fast.detect(image1,keyPoint1);//FAST特征点提取
                //fast.detect(image2,keyPoint2);//FAST特征点提取


17/12/13:测试图片,背景是动态的,车辆也是动态的
【opencv】动态背景下运动目标检测 FAST+SURF+FLANN配准差分 17/12/13更新图片_第2张图片


你可能感兴趣的:(opencv,mfc,c++,opencv)