- 机器学习:k均值
golemon.
ML机器学习均值算法人工智能
所有代码和文档均在golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com),欢迎查看。在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚
- 第N5周:Pytorch文本分类入门
计算机真好丸
pytorch分类人工智能
文章目录一、前期准备1.环境安装2.加载数据3.构建词典4.生成数据批次和迭代器二、准备模型1.定义模型2.定义实例三、训练模型1.拆分数据集并运行模型2.使用测试数据集评估模型本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.环境安装确保安装了torchtext与portalocker库2.加载数据importtorch#强制使用CPUdevice=torch.devi
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- 如何避免redis长期运行持久化AOF文件过大的问题:AOF重写
学会了没
redisaofAOF重写
一、AOF重写的核心作用通过重建AOF文件,解决以下问题:体积压缩:消除冗余命令(如多次修改同一key),生成最小操作集合。混合持久化支持(若启用aof-use-rdb-preambleyes):生成RDB头部+增量AOF命令。数据一致性:确保AOF文件仅包含有效数据集的完整操作记录。二、触发AOF重写的方式1.自动触发通过redis.conf配置触发条件:auto-aof-rewrite-per
- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- Spark 性能优化(四):Cache
LevenBigData
spark性能调优spark性能优化大数据
在Spark中,缓存是一种将计算结果存储在内存中的方式,目的是加速后续操作。当你执行迭代算法或查询时,如果多次重复使用相同的数据集,缓存可以避免每次都重新计算相同的转换操作。通过缓存,Spark可以将数据存储在内存中,这样在后续的处理阶段就能更快地访问。1.Spark缓存的关键点:缓存基本概念:通过调用.cache()对DataFrame或RDD进行缓存。默认情况下,数据会存储在内存中(RAM),
- 柑橘叶子病害检测数据集VOC+YOLO格900张3类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):900标注数量(xml文件个数):900标注数量(txt文件个数):900标注类别数:3标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["canker","kar
- doris:查询缓存
向阳1218
大数据doris
概念介绍SQLCache是Doris提供的一种查询优化机制,可以显著提升查询性能。它通过缓存查询结果来减少重复计算,适用于数据更新频率较低的场景。SQLCache基于以下关键因素来存储和获取缓存:SQL文本视图定义表和分区的版本用户变量和结果值非确定函数和结果值行策略定义数据脱敏定义以上因素的组合唯一确定一个缓存数据集。如果其中任何一个发生变化,例如SQL变化、查询字段或条件不同或者数据更新后版本
- 第二章:13.1 机器学习的迭代发展
望云山190
机器学习人工智能
目录机器学习模型开发流程构建电子邮件垃圾邮件分类器示例总结垃圾邮件分类示例构建垃圾邮件分类器机器学习模型开发流程确定系统架构:首先,需要决定机器学习系统的总体架构,这包括选择合适的模型、确定使用的数据集、可能还包括选择超参数等。实现和训练模型:根据上述决定,实现并训练一个模型。通常,第一次训练的模型不会立即达到预期的效果。诊断和调整:对模型进行诊断,查看算法的偏差、方差或进行错误分析。根据诊断结果
- 深度学习(1)-简单神经网络示例
yyc_audio
深度学习人工智能
我们来看一个神经网络的具体实例:使用Python的Keras库来学习手写数字分类。在这个例子中,我们要解决的问题是,将手写数字的灰度图像(28像素×28像素)划分到10个类别中(从0到9)。我们将使用MNIST数据集,图2-1给出了MNIST数据集的一些样本。在机器学习中,分类问题中的某个类别叫作类(class),数据点叫作样本(sample),与某个样本对应的类叫作标签(label)。你不需要现
- 建筑物损坏程度分割数据集labelme格式2816张5类别
FL1623863129
数据集深度学习
数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)图片数量(jpg文件个数):2816标注数量(json文件个数):2816标注类别数:5标注类别名称:["minor-damage","destroyed","un-classified","major-damage","no-damage"]每个类别标注的框数:minor-damagecount=1371
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 8 > 查找
irisart
算法c语言
基本概念查找表:用于查找的数据集合称为查找表,由同类元素组成。静态查找表:只需要进行查找操作。动态查找表:还可以进行增删操作。唯一表示数据元素的数据项。算法好坏评价:查找长度:在查找运算中需要对比关键字多少次。反映了查找操作时间的复杂度。平均查找长度:所有查找过程中进行关键字比较的平均值。(通常考虑查找成功和失败)ASL=∑i=1nPiCi(P:查找i号元素的概率,C:查找i号元素的查找长度)AS
- Python Pandas数据清洗之缺失数据处理
python慕遥
Pandaspythonpandas开发语言
大家好,在数据分析和处理过程中,缺失数据是常见且不可避免的现象。无论是在数据收集、传输或存储的过程中,数据集可能会出现部分丢失。缺失数据的存在不仅会影响数据的完整性,还可能对后续的数据分析和建模造成不利影响。为了保证数据质量,合理处理缺失数据至关重要。Python的Pandas库提供了强大的工具,能够高效处理数据中的缺失值,特别是通过插值和填充技术来弥补数据的缺失。本文将介绍如何使用Pandas处
- 计算机视觉:COCO数据集
00&00
计算机视觉深度学习人工智能计算机视觉人工智能
COCO(CommonObjectsinContext)是一个广泛使用的计算机视觉数据集,主要用于图像识别、物体检测、分割和关键点检测等任务。以下是对COCO数据集的详细介绍,包括其特点、组成部分以及在计算机视觉中的应用。一、COCO数据集的特点1.规模庞大COCO数据集包含超过30万张图像,其中超过20万张图像有注释。这些图像来自不同的场景和对象,使得数据集具有广泛的代表性。2.丰富的标注信息物
- (15-3)DeepSeek混合专家模型初探:模型微调
码农三叔
训练RAG多模态)人工智能Deekseep深度学习大模型transformer
3.4模型微调在本项目中,微调脚本文件finetune.py提供了一套全面的工具,用于对DeepSeek-MoE预训练语言模型进行微调。支持加载特定任务的数据、对数据进行预处理和编码,以及通过多种配置选项(如LoRA量化、分布式训练等)对模型进行高效训练。用户可以根据自己的需求,通过命令行参数或配置文件调整微调策略,以优化模型在特定任务或数据集上的性能。3.4.1微调原理在DeepSeek-MoE
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- YOLOv1 损失函数
余将董道而不豫兮
YOLO神经网络python深度学习人工智能机器学习计算机视觉
相关文章YOLOv1论文简要YOLOv1数据集加载YOLOv1损失函数YOLOv1模型构建与训练YOLOv1目标检测项目地址:YOLOv1VOC2007笔者训练的权重地址:阿里云盘分享10秒文章速览对于YOLOv1的损失函数,使用Python程序实现损失函数的计算关于损失函数的计算,在《YOLOv1论文简要》一文中已经进行了较详细的解释。只不过,在本文中,需要以代码的形式表达出来平方和误差在YOL
- golang 文件
千年死缓
golang开发语言后端
golang文件概念文件是计算机系统中用于存储和管理的数据集合,具有唯一的名称,存在于存储介质上,包含创建、修改等属性,通过文件系统进行组织,用户可进行读取、写入等操作文件流文件输入流(InputStream)定义:文件输入流是从文件到程序的数据传输路径。用途:用于从文件中读取数据操作:包括打开文件、读取数据、关闭文件等类型:可以是字节流(读取字节)或字符流(读取字符)文件输出流(OutputSt
- Elasticsearch和Kibana的安装部署及服务器配置
TpCode
elasticsearch服务器大数据
Elasticsearch和Kibana是一对强大的工具,用于搜索、分析和可视化大规模数据集。Elasticsearch是一个开源的分布式搜索和分析引擎,而Kibana是一个用于数据可视化的开源工具。本文将详细介绍如何安装、部署和配置Elasticsearch和Kibana,并在服务器上运行它们。步骤1:安装JavaElasticsearch和Kibibana都需要Java来运行。确保您的服务器上
- ADX物化视图的内存优化与去重策略
t0_54coder
编程问题解决手册flaskpython后端个人开发
在AzureDataExplorer(ADX)中使用物化视图(MaterializedView)时,处理大规模数据集的去重和聚合操作时,可能会遇到内存问题。本文将详细讨论如何通过优化策略来克服这些问题,并提供一个具体的实例来展示如何实现。问题背景当我们尝试在ADX中创建一个物化视图,用于从源表中去除重复数据并进行聚合操作时,常常会遇到内存不足的错误。这通常是由于distinct*操作过于消耗内存,
- 探索外盘期货:主力连续合约与月份合约数据解析
level2Tick
外盘期货高频数据区块链人工智能大数据数据库金融python
探索外盘期货:主力连续合约与月份合约数据解析为了促进学习和研究,我们在此分享一部分匿名处理的外盘期货高频历史行情数据集。外盘期货分钟高频历史行情数据链接:https://pan.baidu.com/s/1vkCwoZhbk55MXF7o8724Xw?pwd=9tna提取码:9tna请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。描述性统计分析通过对纽约期货高频合约历史行情数据的描述
- GO语言中的结构体struct
敖光 SRE
go基础知识golang开发语言后端
结构体结构体是由一系列具有相同类型或不同类型的数据构成的数据集合。结构体是由0个或多个任意类型的值聚合成的实体,每个值都可以被称为结构体的成员。特性结构体的成员也可以被称为"字段",具有以下特性:字段拥有自己的类型和值。字段名必须唯一。字段的类型也可以是结构体;甚至是字段所在结构体的类型的指针类型。字段的首字母决定其可访问性。自定义类型packagemainimport"fmt"typet1int
- 读懂AI Agent:基于大模型的人工智能代理
姚瑞南
AI行业产品调研AI行业资讯大模型落地探索及agent搭建人工智能机器人自然语言处理AIGCchatgptAI作画
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录⼀、背景介绍⼆、Agent概述三、工作原理⼀、背景介绍⼤语⾔模型的浪潮推动了AIAgent相关研究快速发展,AIAgent是当前通往AGI的主要探索路线。⼤模型庞⼤的训练数据集中
- 从0开始制作ArcGis——第一章
geocat
从0开始制作ArcGisarcgisc++shp
一、关于shp文件1.什么是shp文件?2.shp文件的使用场景3.本章结束1.什么是shp文件?shp文件是一个存储了非拓扑几何体及其属性信息的地理特征的数据集。非拓扑:点、线、面等几何体之间并无拓扑关系,每一个记录(几何体)都是各自独立的;属性信息:dbf中存储了描述shp中这些几何体的信息,如点名等地理属性等特征。因为shp文件没有存储几何体之间的拓扑关系,因此shp文件在进行绘制和读写的时
- 数据总线/一致性维度/总线矩阵
DouMiaoO_Oo
数据仓库
数据孤岛企业内部各个系统中的数据被隔离在不同的数据库中,无法进行共享和整合,严重影响了企业的决策能力和运营效率。数据仓库数据总线一种技术解决方案,旨在实现数据仓库与各个数据源之间的数据集成、交换和共享,通常做法是将所有的数据源连接到一条共享的数据总线上。数据总线通过建立数据集成层,实现了不同数据源之间的数据传输和转换,从而打破数据孤岛,实现数据共享。数据总线连接多个数据源,并将数据按照一定的规则进
- nnUNet V2修改网络——替换为U-Net V2
w1ndfly
nnU-NetV2修改网络人工智能深度学习计算机视觉卷积神经网络机器学习
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。U-NetV2是一种先进的医学图像分割模型,它通过改进的跳跃连接和语义细节注入(SDI)模块,有效地融合了高级语义信息和低级细节信息,从而显著提升了分割精度。相比原始U-Net,U-NetV2在多个数据集上表现出更
- 智慧交通道路路面状态干燥潮湿分割数据集labelme格式1115张7类别
FL1623863129
数据集深度学习
数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)图片数量(jpg文件个数):1115标注数量(json文件个数):1115标注类别数:7标注类别名称:["plate","wet","humid","slush","snow","face","dry"]每个类别标注的框数:platecount=205wetcount=667humidcount=634sl
- ML.NET库学习006:成人人口普查数据分析与分类预测
North_D
ML.NET库机器学习人工智能深度学习数据挖掘目标检测自然语言处理神经网络
文章目录ML.NET库学习006:成人人口普查数据分析与分类预测概述数据集数据字段解释为何数据准备很重要主要功能与模块数据准备机器学习工作流代码结构说明数据准备模块机器学习工作流数据加载与分割特征工程与模型训练模型评估与预测实现细节与注意事项数据准备模块机器学习工作流性能优化项目优势LightGBM分类器原理说明总结ML.NET库学习006:成人人口普查数据分析与分类预测概述本项目使用C#和ML.
- Go语言数组与切片详解
sillyfoxzero
GO语言开发学习golang算法
一.数组数组的定义:相同类型的数据集合go语言中数组的索引从0开始没有赋值的数值型数组,默认值为0数组一旦被创建,它的大小就是不可改变的(1)声明数组与打印var变量名[大小]变量类型//数组的声明varnums[4]int//数组的赋值nums[0]=1nums[1]=2nums[2]=3nums[3]=4/***************数组的打印*************/fmt.Printf
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found