- 利用LangChain的StackExchange组件实现智能问答系统
nseejrukjhad
langchainmicrosoft数据库python
利用LangChain的StackExchange组件实现智能问答系统引言在当今的软件开发世界中,StackOverflow已经成为程序员解决问题的首选平台之一。而LangChain作为一个强大的AI应用开发框架,提供了StackExchange组件,使我们能够轻松地将StackOverflow的海量知识库集成到我们的应用中。本文将详细介绍如何使用LangChain的StackExchange组件
- 基于 LangChain 开发应用程序第三章-储存
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分之前的章节可以查看基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出第三章储存在与语言模型交互时,你可能已经注意到一个关键问题:它们并不记忆你之前的交流内容,这在我们构建一些应用程序(如聊天机器人)的时候,带来了很大的挑战,使得对
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- 从零搭建一个可离线使用的可实时更新扩展信息的智能问答系统 llamaindex&LLama3大模型&RAG
千年奇葩
AI人工智能aillama人工智能llamafactory大模型
之前对一件事很好奇,为什么去年训练的大模型可以回答今天的新闻内容。答案是使用了知识扩展系统。基本原理是把参考答案和问题一同提给大模型,给他充分的参考信息做回复编辑。本文教你完成离线版本的智能问答系统搭建。有问题请直接留言最近在疯狂找下家,本人精通图形渲染和ai,求捞啊!基本架构图讲一下基本运行流程:人工准备数据转为嵌入向量存入数据库并生成索引用户提问流程:用户输入问题在索引数据库中查询匹配度较高的
- Ollama教程——深入解析:使用LangChain和Ollama构建JavaScript问答系统
walkskyer
ollama入门教程langchainjavascript开发语言ollamaAI
ollama入门系列教程简介与目录相关文章:Ollama教程——入门:开启本地大型语言模型开发之旅Ollama教程——模型:如何将模型高效导入到Ollama框架Ollama教程——兼容OpenAIAPI:高效利用兼容OpenAI的API进行AI项目开发Ollama教程——使用LangChain:Ollama与LangChain的强强联合Ollama教程——生成内容API:利用Ollama的原生AP
- 心理健康问答系统-AIGC大模型-小程序制作
阿利同学
小程序制作AIGC小程序问答系统心理健康人工智能小程序制作大模型
制作一个心理健康问答系统的小程序,涉及到多个环节和技术领域。这里将从需求分析、技术选型、开发流程、API调用等方面进行详细说明。一、需求分析与规划在开始任何项目之前,首先需要明确的是你的小程序想要解决什么样的问题,提供哪些功能给用户。对于心理健康问答系统来说,可能的功能包括但不限于:心理健康知识科普用户情绪识别及反馈提供专业心理咨询服务情绪日记记录心理健康测试问卷在线预约心理医生开发技术Sprin
- Cerebras DocChat发布:基于Llama 3构建,DocChat在几小时内完成GPT-4级别的对话问答训练
科技大本营
llama人工智能算法深度学习机器学习
Cerebras发布的DocChat标志着基于文档的对话式问答系统的一个重大里程碑。Cerebras以其在机器学习(ML)和大型语言模型(LLMs)方面的深厚专业知识而闻名,推出了DocChat系列的两个新模型:CerebrasLlama3-DocChat和CerebrasDragon-DocChat。这些模型旨在提供高性能的对话式人工智能,特别是针对基于文档的问答任务,并利用Cerebras的尖
- 保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统
2401_85763803
langchain安全人工智能
保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统在人工智能(AI)飞速发展的今天,AI问答系统已经成为企业与客户互动的重要工具。然而,随之而来的个人数据隐私问题也日益凸显。如何在不泄露用户隐私的前提下,利用AI的强大能力提供智能服务?本文将详细介绍如何使用LangChain和Presidio库构建一个既安全又高效的AI问答系统。一、隐私保护的重要性个人可识别信息(
- 人工智能领域--RAG技术
胡萝卜不甜
机器学习人工智能python学习算法
今天带大家来学习一下RAG技术,尤其在在大模型中应用广泛。一.RAG(RetrievalAugmentedGeneration)检索增强生成RAG,即Retrieval-AugmentedGeneration(检索增强的生成),是一种结合了检索(Retrieval)和生成(Generation)机制的人工智能技术,常用于提升自然语言处理(NLP)任务的性能,尤其是在问答系统、文本摘要、对话系统等领
- 【Python机器学习】NLP概述——聊天机器人的自然语言流水线
zhangbin_237
Python机器学习自然语言处理机器人人工智能python机器学习
构建对话引擎或者聊天机器人所需的NLP流水线类似于某些问答系统。聊天机器人需要4个处理阶段和一个数据库来维护过去语句和回复的记录。这4个处理阶段中的每个阶段都可以包含一个或多个并行或串行工作的处理算法。如下图所示:1、解析:从自然语言文本中提取特征、结构化数值数;2、分析:通过对文本的情感、语法合法度及语义打分,生成和组合特征;3、生成:使用模板、搜索或语言模型生成可能的回复;4、执行:根据对话历
- #LLM入门|Prompt#3.1 第三部分 使用 LangChain 开发应用程序_简介
向日葵花籽儿
LLM入门教程笔记AIGCpromptpythonLLMlangchain人工智能chatgpt
概述如何能够基于ChatGPT搭建一个完整、全面的问答系统,要搭建基于ChatGPT的完整问答系统,除去上一部分所讲述的如何构建PromptEngineering外,还需要完成多个额外的步骤。例如,处理用户输入提升系统处理能力,使用思维链、提示链来提升问答效果,检查输入保证系统反馈稳定,对系统效果进行评估以实现进一步优化等。当ChatGPTAPI提供了足够的智能性,系统的重要性就更充分地展现在保证
- 计算机毕设分享 面向高考招生咨询的问答系统设计与实现(源码+论文)
源码爱鸭
高考毕设毕业设计开源
文章目录0项目说明1项目说明2系统设计3系统功能3.1问答3.2问题模板4实验结果5论文目录6项目工程0项目说明面向高考招生咨询的问答系统设计与实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1项目说明本系统主要从数据获取,问题分类,问题处理和答案生成以及软件设计四个方面论述自动问答系统的设计与实现。数据获取涉及到网络数据抓取技术,数据库存储与操作,本文使用了python网络爬虫和MyS
- AI问答系统的一般问题
UPUPUPEveryday
人工智能机器学习深度学习
AI对话结果的可信程度AI对话结果的可信程度取决于多个因素。首先,可信度受到AI系统的训练和能力的影响。一个经过充分训练、经过验证的AI系统可能会产生更准确和可靠的对话结果。其次,可信度还取决于对话内容的复杂程度。AI系统在处理简单和直接的问题上可能比处理复杂和抽象的问题更具可信度。此外,可信度还受到语言模型和数据集的质量的影响。如果语言模型具有广泛且准确的数据集作为基础,那么结果的可信度可能会更
- 合槽位填充技术的问答系统构建步骤及其所需的技术和工具
Komorebi_9999
知识图谱问答系统自然语言处理
下面是结合槽位填充技术的问答系统构建步骤及其所需的技术和工具:1.知识图谱构建技术/工具:Neo4j或ArangoDB(图数据库)RDF2Neo(将RDF数据导入Neo4j的工具)D2RQ(将关系型数据库转化为SPARQL端点)模型算法:资源描述框架(RDF)Web本体语言(OWL)2.自然语言处理(NLP)技术/工具:spaCy(用于文本处理、词性标注、命名实体识别等)NLTK或HuggingF
- 【无标题】
Komorebi_9999
知识图谱问答系统自然语言处理
要构建一个基于知识图谱的问答系统,你需要进行以下工作:知识图谱构建:数据采集:从各种来源(如公开数据库、API、网页等)收集与你的领域相关的数据。数据清洗和预处理:清洗数据,去除重复、错误或不相关的信息,对数据进行归一化、标准化处理。实体识别和关系抽取:从数据中识别出实体(如人、地点、概念等)和它们之间的关系。构建图谱:将实体和关系组织成图谱结构,通常使用图数据库来存储。自然语言处理(NLP):分
- 基于neo4j的汽车领域知识图谱问答系统
程序员~小强
neo4j汽车知识图谱
介绍:请使用前务必读一下README.md,系统主要是汽车领域相关知识图谱问答系统,包括了汽车的价格、品牌等十几个关系实体,十几个关系,数据量实体7000+,关系9000+整个系统使用django构建,自带了一份数据,比较完整,有初始化数据接口,每次务必初始化数据后使用,neo4j按照README.md初始化,注意初始化可能需要一个多小时。底层数据库知识图谱采用neo4j,关系型数据库采用sqli
- 构建智能电影知识图谱问答系统
程序员~小强
知识图谱人工智能
在当今信息爆炸的时代,数据的组织与检索变得日益重要。知识图谱作为组织和管理复杂数据关系的强大工具,为实现智能问答系统提供了坚实的基础。本文将详细解析如何利用Python、Django框架以及Neo4j数据库,从零开始构建一个电影知识图谱问答与展示系统。###首先,系统概览本系统的核心是一个电影领域的知识图谱问答和展示平台,其背后依托的是强大的Neo4j图数据库。整个平台是基于Python的Djan
- 构建智能电影知识图谱问答系统
程序员~小强
知识图谱人工智能
在当今信息爆炸的时代,数据的组织与检索变得日益重要。知识图谱作为组织和管理复杂数据关系的强大工具,为实现智能问答系统提供了坚实的基础。本文将详细解析如何利用Python、Django框架以及Neo4j数据库,从零开始构建一个电影知识图谱问答与展示系统。首先,系统概览本系统的核心是一个电影领域的知识图谱问答和展示平台,其背后依托的是强大的Neo4j图数据库。整个平台是基于Python的Django框
- NLP学习-05.问答系统基础-文本表示(word representation)-距离计算
logi
上几节已经介绍了文本的分词,拼写纠错,这节介绍wordrepresentation和距离的计算都比较简单,不做详细说明.什么是wordrepresentation即将一个文本进行向量化,这样可以容易地进行距离的度量.有哪些方法进行文本向量化onehot:每个词都用onehot变化表示成稀疏向量;booleanrepresentation:即词典的长度为向量长度,有词的记为1;booleanrepr
- 深度学习在知识图谱问答中的革新与挑战
cooldream2009
AI技术NLP知识知识图谱深度学习知识图谱人工智能
目录前言1背景知识2基于深度学习改进问句解析模型2.1谓词匹配2.2问句解析2.3逐步生成查询图3基于深度学习的端到端模型3.1端到端框架3.2简单嵌入技术4优势4.1深入的问题表示4.2实体关系表示深挖4.3候选答案排序效果好5挑战5.1依赖大量训练语料5.2推理类问句效果有限5.3可解释性差结语前言随着深度学习技术的迅猛发展,其在知识图谱问答领域的应用正成为推动智能问答系统发展的关键因素。本文
- 基于预训练语言模型的检索- 匹配式知识图谱问答系统
Necther
自然语言处理知识图谱语言模型人工智能
基于预训练语言模型的检索-匹配式知识图谱问答系统张鸿志,李如寐,王思睿,黄江华美团,北京市朝阳区100020{zhanghongzhi03,lirumei,wangsirui,huangjianghua}@http://meituan.comAbstract.本文介绍了我们在CCKS-2020的KBQA任务上的技术方案。该系统包括指称识别、实体链接、候选答案生成以及答案排序四个子模块。在指称识别中
- 完蛋!我把AI喂吐了!
有道AI情报局
有道QAnything人工智能机器学习算法
当我们用RAG构建一个知识库问答应用的时候,总是希望知识库里面灌的数据越多,问答的效果越好,事实真是如此吗?这篇文章给大家答案。引言在人工智能问答系统的发展中,RAG(Retrieval-AugmentedGeneration)技术以其独特的检索增强生成方式,为减少大模型幻觉开辟了新的天地。然而,在实际落地过程中有一个很大的疑问:RAG系统,数据越多效果越好吗?本文将深入分析数据量如何影响RAG系
- QAnything之BCEmbedding技术路线
有道AI情报局
有道QAnything人工智能算法开源
QAnything和BCEmbedding简介QAnything[github]是网易有道开源的检索增强生成式应用(RAG)项目,在有道许多商业产品实践中已经积累丰富的经验,比如有道速读和有道翻译。QAnything是一个支持任意格式文件或数据库的本地知识库问答系统,可获得准确、快速、靠谱的问答体验。QAnything支持断网离线使用,可私有化。BCEmbedding是网易有道研发的两阶段检索算法
- 【大厂AI课学习笔记】【1.5 AI技术领域】(10)对话系统
giszz
学习笔记人工智能学习笔记
对话系统,DialogueSystem,也称为会话代理。是一种模拟人类与人交谈的计算机系统,旨在可以与人类形成连贯通顺的对话,通信方式主要有语音/文本/图片,当然也可以手势/触觉等其他方式一般我们将对话系统,分为两类:任务导向性的对话系统。例如问答系统;非任务导向型的对话系统。例如聊天机器人;比如在聊天机器人,语音助手,智能客服方面,都有很大的应用。比较重要的是,基于人工智能的对话系统,可以模拟人
- Bert与ChatGPT
ALGORITHM LOL
bertchatgpt人工智能
1.Bert模型BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种预训练语言表示的方法,由GoogleAI在2018年提出。它标志着自然语言处理(NLP)领域的一个重大进步,因为它能够理解单词在不同上下文中的含义,从而显著提高了机器翻译、问答系统、文本摘要等任务的性能。核心概念双向Transformer:BERT的核心是Tran
- 使用阿里云通义千问14B(Qianwen-14B)模型自建问答系统
wangqiaowq
人工智能
使用阿里云通义千问14B(Qianwen-14B)模型自建问答系统时,调度服务器资源的详情将取决于以下关键因素:模型部署:GPU资源:由于Qianwen-14B是一个大规模语言模型,推理时需要高性能的GPU支持。模型参数量大,推理过程中对显存(GPU内存)的要求高,可能需要多块高端GPU,并且考虑是否支持模型并行或数据并行以充分利用硬件资源。单卡显存需求:根据之前的信息,Qianwen-14B微调
- 第14课:动手制作自己的简易聊天机器人
一纸繁鸢w
自动问答简介自动聊天机器人,也称为自动问答系统,由于所使用的场景不同,叫法也不一样。自动问答(QuestionAnswering,QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的
- 自然语言处理(NLP)——使用Rasa创建聊天机器人
思诺学长
NLP自然语言处理机器人nlp自然语言处理
1基本概念1.1自然语言处理的分类IR-BOT:检索型问答系统Task-bot:任务型对话系统Chitchat-bot:闲聊系统1.2任务型对话Task-Bot:task-orientedbot这张图展示了一个语音对话系统(或聊天机器人)的基本组成部分和它们之间的工作流程。这个系统可以接受语音信号作为输入,输出文本响应,并且它包括以下几个主要部分:1.2.1自动语音识别(ASR)这个部分的任务是将
- 自然语言NLP
Flying_Fish_roe
自然语言处理人工智能
什么是NLPNLP(NaturalLanguageProcessing)是自然语言处理的缩写,是计算机科学和人工智能领域的一个研究方向。NLP致力于使计算机能够理解、处理和生成人类自然语言的能力。通过NLP技术,计算机可以通过识别和理解语言中的文本、语音和情感等信息来与人类进行交互。NLP的应用包括机器翻译、信息提取、问答系统、情感分析、语音识别和自动摘要等。NLP的目标是使计算机具备与人类相近的
- 解析基于检索排序的知识图谱问答系统
cooldream2009
AI技术NLP知识知识图谱知识图谱人工智能问答技术检索排序
目录前言1问句的表示与语义理解1.1问句表示的重要性1.2端到端网络的优势2知识图谱中的排序问题2.1知识图谱的核心作用2.2查询匹配的转化与排序问题2.3实体链接的关键性2.4路径的构建与系统优化3难点与挑战3.1实体链接、命名实体识别和消歧3.2排序模型的挑战4优势4.1框架的灵活性4.2容易整合的端到端网络优化4.3综合运用排序模型5劣势5.1依赖特征工程5.2语义组合和推理问题的挑战结语前
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。