图像处理基础秋招复习(二)

  1. 简述BP神经网络,AdBoost的基本原理?

复习的链接:
1。https://blog.csdn.net/songzitea/article/details/13761811

1. 简述BP神经网络,AdBoost的基本原理?
解:BP神经网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

AdBoost是一个广泛使用的BOOSTING算法,其中训练集上依次训练弱分类器,每次下一个弱分类器是在训练样本的不同权重集合上训练。权重是由每个样本分类的难度确定的。分类的难度是通过分类器的输出估计的。

你可能感兴趣的:(Personal,Notes)