- 34、深度学习-自学之路-深入理解-NLP自然语言处理-RNN一个简单的程序,可以从程序中理解RNN的基本思想。
小宇爱
深度学习-自学之路深度学习自然语言处理rnn
importsys,random,mathfromcollectionsimportCounterimportnumpyasnpf=open('tasks_1-20_v1/en/qa1_single-supporting-fact_train.txt','r')raw=f.readlines()f.close()tokens=list()forlineinraw[0:1000]:tokens.ap
- Transformer 模型架构
2401_89793006
热门话题transformer深度学习人工智能
Transformer是一种模型架构(ModelArchitecture),而不是一个软件框架(Framework)。它的定位更接近于一种设计蓝图,类似于建筑中的结构设计方案。以下是详细解释:1.架构vs框架的区别概念定义示例模型架构定义神经网络的结构设计Transformer、CNN、RNN开发框架提供实现模型的工具和库PyTorch、TensorFlow2.Transformer作为架构的核心
- IOS Blocks
Rainbow_Me
iosreference存储c
在ios,blocks是对象,它封装了一段代码,这段代码可以在任何时候执行。Blocks可以作为函数参数或者函数的返回值,而其本身又可以带输入参数或返回值。它和传统的函数指针很类似,但是有区别:blocks是inline的,并且它对局部变量是只读的。1.Blocks的定义:int(^Multiply)(int,int)=^(intnum1,intnum2){returnnum1*num2;};定义
- 力扣-二叉树-235 二叉搜索树的最近公共祖先
夏末秋也凉
力扣#二叉树leetcode算法
思路重点抓住二叉搜索树的特点是有序,然后思考清楚搜索到的p和q情况classSolution{public:TreeNode*lowestCommonAncestor(TreeNode*root,TreeNode*p,TreeNode*q){if(root==NULL)returnNULL;if(root->valval&&root->valval){TreeNode*right=lowestCo
- 力扣-二叉树-450 删除二叉搜索树中的节点
夏末秋也凉
力扣#二叉树leetcode算法数据结构
思路和向二叉搜索树插入节点一样,都可以利用递归完成不同节点的连接代码classSolution{public:TreeNode*deleteNode(TreeNode*root,intkey){if(root==nullptr)returnnullptr;if(root->val==key){if(root->left==nullptr&&root->right==nullptr)returnnu
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- 从代码到专利:如何用自注意力机制实现高效序列转换?——深度解析Google的Transformer架构
CodePatentMaster
transformer深度学习人工智能AIGC架构
本文将从五个方面【技术问题、技术手段、技术效果、代码实现逻辑和工程落地建议】解读以下专利。US201816021971A,ATTENTION-BASEDSEQUENCETRANSDUCTIONNEURALNETWORKS一、技术问题:为什么需要自注意力机制?在传统的序列转换任务(如机器翻译、语音识别等)中,循环神经网络(RNN)和卷积神经网络(CNN)是常用的模型架构。然而,这些模型存在以下问题:
- Ubuntu 下 nginx-1.24.0 源码分析 - ngx_pnalloc函数
若云止水
nginx运维
ngx_pnalloc声明在src\core\ngx_palloc.hvoid*ngx_pnalloc(ngx_pool_t*pool,size_tsize);定义在src\core\ngx_palloc.cvoid*ngx_pnalloc(ngx_pool_t*pool,size_tsize){#if!(NGX_DEBUG_PALLOC)if(sizemax){returnngx_palloc_
- 《大模型应用开发极简入门》随记
hoypte
人工智能
术语:自然语言处理(NLP)人工智能(AI)大预言模型(LLM)机器学习(ML)深度学习(DL)内容LLM概述ML算法被称为人工神经网络DL是ML的一个分支最先开始简单语言模型吗,例如:n-gram模型(通过词频来根据前面的词预测句子里下一个词---可能生成不连贯的词),为了提升性能引入循环神经网络(RNN)和长短期记忆(LSTM)网络---处理大量数据效率还是不行。Transformer架构架构
- Python 用pytorch从头写Transformer源码,一行一解释;机器翻译实例代码;Transformer源码解读与实战
医学小达人
NLPLLMsGPT深度学习人工智能transformerpython机器学习
1.Transformer简介Transformer模型被提出的主要动机是解决序列处理任务的长距离依赖问题。传统的RNN和LSTM虽然能够处理序列任务,但因为它们在处理序列时需要一步步前进,因此其他信息无法立即对其产生影响,当序列变长时,长距离依赖的信息很可能会被丢失。为了解决这个问题,Transformer模型被设计出来,内核思想是利用自注意力机制,这样模型可以直接对输入序列的任意两个位置建立直
- 如何解决RNN梯度爆炸和弥散的问题
路野yue
机器学习人工智能
1.梯度裁剪(GradientClipping):用于防止梯度爆炸。在每次参数更新之前,计算梯度的范数,如果超过某个阈值,则将梯度缩放到这个阈值。这种方法可以防止梯度在反向传播过程中变得过大。2.使用ReLU激活函数:相比于tanh或sigmoid,ReLU激活函数(及其变种如LeakyReLU)在正区间内梯度恒定,这有助于缓解梯度爆炸问题。但需要注意的是,ReLU也可能导致神经元死亡的问题。3.
- list中将具有对应字段的某一个对象放在第一个
NewBee.Mu
从头开始学java注意事项知识点总结java大数据mysql
publicclassDemo{privateIntegerid;privateIntegernum;publicDemo(){}publicIntegergetId(){returnid;}publicvoidsetId(Integerid){this.id=id;}publicIntegergetNum(){returnnum;}publicvoidsetNum(Integer<
- Python 循环神经网络(RNN)算法详解与应用案例
闲人编程
pythonpythonrnn算法循环神经网络深度学习文本生成
目录Python循环神经网络(RNN)算法详解与应用案例引言一、RNN的基本原理1.1RNN的结构1.2RNN的优势与挑战二、Python中RNN的面向对象实现2.1`RNNCell`类的实现2.2`RNNModel`类的实现2.3`Trainer`类的实现三、案例分析3.1序列预测3.1.1数据准备3.1.2模型训练3.1.3结果分析3.2文本生成3.2.1数据准备3.2.2模型训练3.2.3文
- vue 判断mp3是否加载成功
xuelong-ming
前端vue.jsjavascript前端
一、需求vueMP3加载时,有可能遇到后端没有MP3,但是返回有链接。要求获取MP3失败提示用户,MP3获取失败。二、代码canPlayAudio(url){//判断录音是否加载constaudio=newAudio(url)returnnewPromise((resolve,reject)=>{audio.oncanplay=()=>{resolve(true)audio.remove()}au
- TCP封装数据帧
hc_bmxxf
tcp/ip网络服务器
void*send_data(void*arg)//这是一个发送数据的线程{intsockfd=init_tcp_cli("192.168.0.148",50000)//传ip和port,port==50000是因为大概前五万都被其它服务所占用,50000后是私人ipif(sockfd<0){returnNULL;}unsignedcharpack[128]={0};intlen=0;while(
- springboot+vue使用EasyCaptcha实现简单验证码
ueanaIU潇潇子
springbootvue.js图形验证码EasyCaptcha
一、实现效果springboot使用EasyCaptcha实现简单验证码,更多api和用法可以去github上查看EasyCaptcha:Java图形验证码,支持gif、中文、算术等类型,可用于JavaWeb、JavaSE等项目。二、实现步骤1、导入依赖com.github.whvcseeasy-captcha1.6.2org.openjdk.nashornnashorn-core15.4我使用的
- Transformer
AI专题精讲
深度学习transformer深度学习自然语言处理
1.TransformerTransformer是一种新的、基于attention机制来实现的特征提取器,可用于代替CNN和RNN来提取序列的特征。Transformer首次由论文《AttentionIsAllYouNeed》提出,在该论文中Transformer用于encoder-decoder架构。事实上Transformer可以单独应用于encoder或者单独应用于decoder。Trans
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- RWKV Runner:让RNN-LLM模型触手可及
步子哥
rnn人工智能深度学习
在这个信息爆炸的时代,人工智能(AI)已经成为我们生活中不可或缺的一部分,尤其是大语言模型(LLM)在自然语言处理中的广泛应用。然而,尽管这些技术的潜力巨大,许多用户仍然面临着使用门槛高、配置复杂等问题。为了解决这一困境,RWKVRunner应运而生。它不仅提供了一个简便的接口,还让用户能够轻松地使用大语言模型。本文将深入探讨RWKVRunner的功能、安装步骤以及如何利用它来实现各种应用。RWK
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 压缩动态图片gif 和 静态图片的方法,返回Blob对象
weixin_45907435
javascript前端开发语言
1、定义--压缩动态图片方法exportconstgifCompress=(file,url,max,min,times)=>{if(window.FileReader){letcolors=255letcount=0constfr=newFileReader()fr.readAsArrayBuffer(file)returnnewPromise((resolve)=>{fr.onload=asy
- 微信小程序请求接口封装
大可不必_妄
微信小程序web前端微信小程序前端
1、新建封装请求api/request.js//配置的域名constbaseUrl="xxxxxxxxxxxxxx"//请求公共接口//封装请求module.exports={/***二次封装wx.request*url:请求的接口地址*method:请求方式GET,POST....*data:要传递的参数*/request:(url,method,data)=>{returnnewPromise
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- transformer
我爱派生
深度学习transformer深度学习人工智能
导语:2017年,一篇名为《AttentionisAllYouNeed》的论文横空出世,提出了Transformer模型,彻底改变了自然语言处理(NLP)领域的格局。Transformer以其独特的结构和强大的性能,迅速成为NLP领域的霸主,并逐渐向其他人工智能领域渗透。本文将带你深入了解Transformer的原理、优势以及应用,探讨其对人工智能发展的深远影响。一、从RNN到Transforme
- Python中LSTM算法的实现与应用
昊叔Crescdim
本文还有配套的精品资源,点击获取简介:本教程详细介绍了如何在Python编程环境下实现LSTM算法。首先解释了LSTM的工作原理,重点在于其门结构如何有效解决传统RNN的梯度问题,并通过控制信息流动以学习长期依赖。接着,教程以Keras库为例,逐步演示了安装库、数据预处理、模型构建、编译、训练、评估和预测等步骤。深入讲解了在序列数据处理如自然语言和时间序列预测任务中的实际应用,并提供了实践案例,强
- 【leetcode】动态规划刷题总结-划分问题
zs1996_
leetcode刷题总结职场和发展leetcode动态规划
判定能否划分一般定义dp[i]表示nums[:i+1]能否划分,然后枚举最后一个子数组的左端点,得到nums[:i+1]能否划分LeetCode2369题检查数组是否存在有效划分classSolution:defvalidPartition(self,nums:List[int])->bool:iflen(nums)==2:returnnums[0]==nums[1]#dp[i]表示nums[:i
- leetcode:33. 搜索旋转排序数组(python3解法)
Cold_Air丶
算法pythonleetcode算法python1024程序员节
难度:中等整数数组nums按升序排列,数组中的值互不相同。在传递给函数之前,nums在预先未知的某个下标k(0int:iftargetinnums:returnnums.index(target)return-1
- 随手记:数组对象去重方法
peachSoda7
前端javascript开发语言
//数组对象去重removeSameData(data,key){letobj={}letnewData=data.reduce((cur,next)=>{letkeyName=key?next[key]:next.id;obj[keyName]?"":obj[keyName]=true&&cur.push(next);returncur;},[])returnnewData}
- 【时序预测】-深度学习系列
TIM老师
时序预测深度学习时序预测
Wavenet(2016)重点:CNN系列+因果卷积+膨胀卷积核心:确保了输出的时间点只依赖于输入序列中时间戳早于或等于该输出时间点的数据,核心模块膨胀卷积能够扩大卷积层的感受野,从而更充分学习序列的全局信息。DeepAR(2017Amazon)DeepAR:ProbabilisticForecastingwithAutoregressiveRecurrentNetworks重点:RNN系列+多元
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$