用卷积神经网络(CNN)实现cifar_10图像识别分类

一、资源链接

无数据集纯代码链接:https://pan.baidu.com/s/1w20ZUkwaYw22qXIRWw2NXA 
提取码:csco 

带数据集和代码链接:  https://pan.baidu.com/s/1OTu17l_9tk7Vg45m1BokNw 
提取码:w7o9 

二、资源格式

一共4个文件,三个为py代码文件,另一个是数据集。目录尽量存放在一起,我的目录是这样的:

用卷积神经网络(CNN)实现cifar_10图像识别分类_第1张图片

都在同一个文件夹下。

其中cifar10.py和cifar10_test中包含文件数据集路径,请根据自己的实际情况修改,我这里数据是下载好的,大家可以采用离线的方法,也可以采用在线下载的方法(如果你的数据集路径中没数据,则自动下载.

三、代码解读

cifar10_test是CNN的代码,代码是对原来官方的代码进行了修改,我对其中模型的各个层数添加了代码的注释,方便阅读与理解CNN层数的变化,并且我添加了一个卷积层与池化层。

#!D:/workplace/python
# -*- coding: utf-8 -*-
# @File  : cifar10_test.py
# @Author: WangYe
# @Date  : 2019/3/26
# @Software: PyCharm

# coding:utf-8
# 导入官方cifar10模块
#from tensorflow.image.cifar10 import cifar10
# import cifar10
# import tensorflow as tf
#
# # tf.app.flags.FLAGS是tensorflow的一个内部全局变量存储器
# FLAGS = tf.app.flags.FLAGS
# # cifar10模块中预定义下载路径的变量data_dir为'/tmp/cifar10_eval',预定义如下:
# # tf.app.flags.DEFINE_string('data_dir', './cifar10_data',
# #                           """Path to the CIFAR-10 data directory.""")
# # 为了方便,我们将这个路径改为当前位置
# FLAGS.data_dir = './cifar10_data'
#
# # 如果不存在数据文件则下载,并且解压
# cifar10.maybe_download_and_extract()
import cifar10,cifar10_input
import tensorflow as tf
import numpy as np
import time

#cifar10.maybe_download_and_extract()
max_steps = 3000
batch_size = 128
data_dir = r'./cifar10_data/cifar-10-batches-bin'


def variable_with_weight_loss(shape, stddev, w1):
    var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))
    if w1 is not None:
        weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name='weight_loss')
        tf.add_to_collection('losses', weight_loss)
    return var


images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=batch_size)

images_test, labels_test = cifar10_input.inputs(eval_data=True,
                                                data_dir=data_dir,
                                                batch_size=batch_size)

image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
label_holder = tf.placeholder(tf.float32, [batch_size])
#第一层


#输入为   batch*24*24*3   卷积后为b*24*24*64   池化后为b*14*14*64
weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=0.05, w1=0)
kernel1 = tf.nn.conv2d(image_holder, weight1, [1, 1, 1, 1], padding='SAME')
bias1 = tf.Variable(tf.constant(0.0, shape=[64]))
# conv1 = tf.nn.relu(tf.nn.bias_add(kernel1,bias1))
conv1 = tf.nn.relu(kernel1 + bias1)
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)



#第二层  输入b*14*14*64  卷积后卫 b*14*14*64    池化后卫为   b*7*7*64
weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=0.05, w1=0.0)
kernel2 = tf.nn.conv2d(norm1, weight2, [1, 1, 1, 1], padding='SAME')
bias2 = tf.Variable(tf.constant(0.1, shape=[64]))
conv2 = tf.nn.relu(kernel2 + bias1)
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')

#第三层
weight3 = variable_with_weight_loss(shape=[5, 5, 64, 128], stddev=0.05, w1=0.0)
kernel3 = tf.nn.conv2d(norm2, weight3, [1, 2, 2, 1], padding='SAME')
bias3 = tf.Variable(tf.constant(0.1, shape=[128]))
conv3 = tf.nn.relu(kernel3 + bias3)    #b*4*4*128
norm3 = tf.nn.lrn(conv3, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
pool3 = tf.nn.max_pool(norm3, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') #b*2*2*128

# #第四层   加入Atrous Convolution卷积层
#膨胀卷积

# weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=0.05, w1=0.0)
# kernel2 = tf.nn.conv2d(norm1, weight2, [1, 1, 1, 1], padding='SAME')
# bias2 = tf.Variable(tf.constant(0.1, shape=[64]))
# conv2 = tf.nn.relu(kernel2 + bias1)
# norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
# pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')



#全链接
reshape = tf.reshape(pool3, [batch_size, -1])  #分开成为
dim = reshape.get_shape()[1].value       #
weight3 = variable_with_weight_loss([dim, 384], stddev=0.04, w1=0.004)
bias3 = tf.Variable(tf.constant(0.1, shape=[384]))
local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)
#全连接层
weight4 = variable_with_weight_loss([384, 192], stddev=0.04, w1=0.004)
bias4 = tf.Variable(tf.constant(0.1, shape=[192]))
local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)
#输出层
weight5 = variable_with_weight_loss([192, 10], stddev=1 / 192, w1=0.0)
bias5 = tf.Variable(tf.constant(0.0, shape=[10]))
logits = tf.matmul(local4, weight5) + bias5


def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,
                                                                   name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)
    return tf.add_n(tf.get_collection('losses'), name='total_loss')


loss = loss(logits, label_holder)

train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
top_k_op = tf.nn.in_top_k(logits, tf.cast(label_holder, tf.int64), 1)

# num_examples = 10000
# import math
# num_iter = int(math.ceil(num_examples/ batch_size))
# true_count = 0
# total_sample_count = num_iter * batch_size
# step = 0
# with tf.Session() as sess:
#     sess.run(tf.global_variables_initializer())
#     tf.train.start_queue_runners()
#     for step in range(max_steps):
#         start_time = time.time()
#         image_batch,label_batch = sess.run([images_train,labels_train])
#         _,loss_value = sess.run([train_op,loss],feed_dict={image_holder: image_batch,label_holder:label_batch})
#         duration = time.time()-start_time
#         if step % 10 == 0:
#             examples_per_sec = batch_size /duration
#             sec_per_batch = float(duration)

#             format_str = ('step %d,loss=%.2f (%.1f examples/sec;%.3f sec/batch)')
#             print(format_str % (step,loss_value,examples_per_sec,sec_per_batch))

#     while step< num_iter:
#         image_batch,label_batch = sess.run([images_test,labels_test])
#         predictions = sess.run([top_k_op],feed_dict = {image_holder:image_batch,
#                                                        label_holder:label_batch})
#         true_count += np.sum(predictions)
#         step+=1
#         if step % 10 ==0:
#             print true_count
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
tf.train.start_queue_runners()
for step in range(max_steps):
    start_time = time.time()
    image_batch, label_batch = sess.run([images_train, labels_train])
    _, loss_value = sess.run([train_op, loss], feed_dict={image_holder: image_batch, label_holder: label_batch})
    duration = time.time() - start_time
    if step % 10 == 0:
        examples_per_sec = batch_size / duration
        sec_per_batch = float(duration)

        format_str = ('step %d,loss=%.2f (%.1f examples/sec;%.3f sec/batch)')
        print(format_str % (step, loss_value, examples_per_sec, sec_per_batch))

num_examples = 10000
import math

num_iter = int(math.ceil(num_examples / batch_size))
true_count = 0
total_sample_count = num_iter * batch_size
step = 0
# with tf.Session() as sess:
while step < num_iter:
    image_batch, label_batch = sess.run([images_test, labels_test])
    predictions = sess.run([top_k_op], feed_dict={image_holder: image_batch,
                                                  label_holder: label_batch})
    true_count += np.sum(predictions)
    step += 1
    if step % 10 == 0:
        print(true_count)

precision = float(true_count) / total_sample_count
print('precision @ 1 =%.3f' % precision)

参考链接:https://blog.csdn.net/u013921430/article/details/80142695

你可能感兴趣的:(python,tensorflow,CNN,机器学习)