- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- 李宏毅机器学习笔记 2.回归
Simone Zeng
机器学习机器学习
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
- 2023春季李宏毅机器学习笔记 02 :机器学习基本概念
女王の专属领地
机器学习深度学习#李宏毅2023机器学习机器学习笔记人工智能
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、機器學習基
- 2023春季李宏毅机器学习笔记 03 :机器如何生成文句
女王の专属领地
#李宏毅2023机器学习机器学习深度学习笔记机器学习人工智能深度学习
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、大语言模型
- Chat GPT4来了,它和3.5区别在哪?李宏毅机器学习笔记
抱抱小杠杠
机器学习人工智能笔记
听说GPT4模型更大、参数更多,功能更强,具体它好在哪里?GPT4真的能看懂图片吗?官方回答:不太能~~下面这张图片是将两个不存在的网址输入进GPT4,问它看到了什么,结果发现GPT真的会胡言乱语,它会根据网址中出现了“man”这个单词,就说他看到了“一个拿着手枪的男人。。。巴拉巴拉”明显就是在胡编乱造!而如果网址中出现了“girl”这个单词,GPT又会说他看到了“一个穿着校服的女孩子。。。巴拉巴
- 2023春季李宏毅机器学习笔记 05 :机器如何生成图像
女王の专属领地
#李宏毅2023机器学习机器学习笔记人工智能机器学习李宏毅AI产品
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、图像生成常
- 2023春季李宏毅机器学习笔记01 :正确认识 ChatGPT
女王の专属领地
深度学习机器学习机器学习李宏毅人工智能AI产品
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、对Chat
- 【23-24 秋学期】NNDL 作业11 LSTM
HBU_David
lstm机器学习人工智能
习题6-4推导LSTM网络中参数的梯度,并分析其避免梯度消失的效果习题6-3P编程实现下图LSTM运行过程李宏毅机器学习笔记:RNN循环神经网络_李宏毅rnn笔记_ZEERO~的博客-CSDN博客https://blog.csdn.net/weixin_43249038/article/details/132650998L5W1作业1手把手实现循环神经网络-CSDN博客https://blog.c
- 李宏毅老师机器学习课程笔记_ML Lecture 1: ML Lecture 1: Regression - Demo
leogoforit
引言:最近开始学习“机器学习”,早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程。今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象。视频链接(bilibili):李宏毅机器学习(2017)另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes)所以,接下来我的笔记只记录一些我自己的总结和听课当时的
- 李宏毅机器学习笔记.Flow-based Generative Model(补)
oldmao_2000
李宏毅机器学习笔记机器学习笔记人工智能
文章目录引子生成问题回顾:GeneratorMathBackgroundJacobianMatrixDeterminant行列式ChangeofVariableTheorem简单实例一维实例二维实例网络G的限制基于Flow的网络构架G的训练CouplingLayerCouplingLayer反函数计算CouplingLayerJacobian矩阵计算CouplingLayerStacking1×1
- 李宏毅机器学习笔记-transformer
ZEERO~
深度学习机器学习笔记transformer深度学习
transformer是什么呢?是一个seq2seq的model。具体应用如上图所示,输入和输出的序列长度不固定,由model自己决定。语音翻译指的是,直接输入一段语音信号,例如英文,输出的直接是翻译之后的中文。seq2seq如今已经是一个应用非常广泛的模型,可以应用于NLP的各种任务,如语义分析,语义分类,聊天机器人等。另外还有个值得说明的功能是做multilabelclassification
- 李宏毅机器学习笔记-半监督学习
ZEERO~
深度学习机器学习笔记学习
半监督学习,一般应用于少量带标签的数据(数量R)和大量未带标签数据的场景(数量U),一般来说,U>>R。半监督学习一般可以分为2种情况,一种是transductivelearning,这种情况下,将unlabeleddata的feature利用进来。另外一种是inductivelearning,这种情况下,在训练的整个过程中,完全不看任何unlabeleddata的信息。为什么要做semi-sup
- 李宏毅机器学习笔记第7周_局部最小值与鞍点
MoxiMoses
机器学习深度学习
文章目录一、OptimizationFailsbecause……二、TaylerSeriesApproximation三、Example总结一、OptimizationFailsbecause……1.问题:我们在做optimization的时候会发现,随着参数的不断更新,training的loss不会再下降,但是我们对loss并不满意。因此我们会发现,一开始model就train不起来,不管我们怎
- 李宏毅机器学习笔记:RNN循环神经网络
ZEERO~
深度学习机器学习机器学习笔记rnn
RNN一、RNN1、场景引入2、如何将一个单词表示成一个向量3种典型的RNN网络结构二、LSTMLSTM和普通NN、RNN区别三、LSTM的训练一、RNN1、场景引入例如情景补充的情况,根据词汇预测该词汇所属的类别。这个时候的Taipi则属于目的地。但是,在订票系统中,Taipi也可能会属于出发地。到底属于目的地,还是出发地,如果不结合上下文,则很难做出判断。因此,使用传统的深度神经网络解决不了问
- 李宏毅机器学习笔记:结构学习,HMM,CRF
ZEERO~
机器学习机器学习笔记学习
李宏毅机器学习笔记:结构学习,HMM,CRF1、隐马尔可夫模型HMM1.1Sequence2Sequence1.2HMM1.3Viterbi算法1.3HMM模型的缺点2、CRF2.1CRF模型2.2CRF模型训练1、隐马尔可夫模型HMM1.1Sequence2Sequence什么是Seq2Seq问题呢?简单来说,就是输入是一个序列,输出也是一个序列。输入和输出的序列可以相等,也可以不相等。在本文中
- 李宏毅机器学习笔记——16. Conditional Generation by RNN&Attention(RNN条件生成与注意力机制)
HSR CatcousCherishes
机器学习基础课程知识机器学习人工智能神经网络
摘要:本章内容是讲解了Generation,Attention,TipsforGeneration,一是围绕用RNN实现Generation(生成)的方法与基本原理,先应用生成句子去介绍生成的基本原理,接着举例无条件的生成图片,其不同的是:将图片上的每个像素点看成一个word,并需要考虑各像素之间的几何关系,所以我们需要借助3D-LSTM完善了Generation图片功能。但是在实际应用中,我们的
- 李宏毅机器学习笔记——生成模型
荆棘鸟》
深度学习人工智能
介绍了三种方法,pixelRNN,VAE,GAN。笔记以VAE为主。pixelRNN比较容易理解,由已知推未知。这种方法还能应用到语音生成等领域在这里有个tips值得说一下,图的每个像素一般RGB三色,问题出在当RGB三个值相差不大时最终的结果像素点的颜色趋向灰色,于是乎,为了使生成的图像更加鲜亮,就需要拉高三个值的差距。简而言之,原本用三个数表示颜色,现在只用一个。VAE是一个相对复杂的东西,事
- 李宏毅机器学习笔记——概率模型
荆棘鸟》
机器学习人工智能神经网络
很有意思的一门课,但关于如何利用P(x)生成x还存在疑惑。在神经网络中y=w*x+b,为什么是这个形式?这门课将在最后归结到这一点上。举一个实际的例子,训练集中A类71个B类69个我们假定A类的71个点遵循gaussiondistribution,上图涉及的函数:输入一个点(代表一个实例的特征vector),输出sample中该点的概率,在下文中即为P(x|A)与P(x|B)该函数有两个参数,μ与
- 李宏毅机器学习笔记
learn_for_more
机器学习人工智能深度学习
DataWhale–李宏毅老师机器学习P5-P8《误差来源》和《梯度下降法》学习笔记学习笔记本文是李宏毅老师B站–《机器学习》课程的学习笔记,在此非常感谢DataWhale提供的平台,希望大家加入到这个学习的大家庭中,共同成长。本文主要是关于误差来源及梯度下降法的介绍,是在老师的讲解视频和学习文档的基础上总结而来。一、误差来源在机器学习中,模型估计的误差可以分为两种,偏差(Bias)和方差(Var
- 【ML入门】李宏毅机器学习笔记02-回归问题(Regression)
BG大龍
【ML入门】李宏毅机器学习笔记02-回归问题(Regression)-知乎https://zhuanlan.zhihu.com/p/74684108
- 李宏毅机器学习笔记第8周_批次与动量
MoxiMoses
机器学习深度学习
文章目录一、Review:OptimizationwithBatch二、SmallBatchv.s.LargeBatch三、Momentum1.SmallGradient2.VanillaGradient3.GradientDescent+Momentum一、Review:OptimizationwithBatch在计算微分的时候,并不是把所有的data对计算出来的L做微分,而是把data分成一个
- 【ML入门】李宏毅机器学习笔记01-Learning Map
BG大龍
【ML入门】李宏毅机器学习笔记01-LearningMap-知乎https://zhuanlan.zhihu.com/p/74377397
- 李宏毅机器学习—机器学习介绍
修_远
李宏毅机器学习
李宏毅机器学习笔记github链接:https://github.com/datawhalechina/leeml-notes李宏毅机器学习笔记在线阅读链接:https://datawhalechina.github.io/leeml-notes机器学习介绍这门课,我们预期可以学到什么呢?我想多数同学的心理预期就是你可以学到一个很潮的人工智慧。我们知道,从今年开始,人工智慧这个词突然变得非常非常非
- 【李宏毅机器学习笔记】9、卷积神经网络(Convolutional Neural Network,CNN)
qqqeeevvv
机器学习深度学习机器学习深度学习
【李宏毅机器学习笔记】1、回归问题(Regression)【李宏毅机器学习笔记】2、error产生自哪里?【李宏毅机器学习笔记】3、gradientdescent【李宏毅机器学习笔记】4、Classification【李宏毅机器学习笔记】5、LogisticRegression【李宏毅机器学习笔记】6、简短介绍DeepLearning【李宏毅机器学习笔记】7、反向传播(Backpropagatio
- 李宏毅机器学习笔记第8周_自动调整学习速率
MoxiMoses
机器学习深度学习
文章目录一、Trainingstuck≠SmallGradient二、Waitaminute三、Trainingcanbedifficultevenwithoutcriticalpoints四、Differentparametersneedsdifferentlearningrate五、Rootmeansquare六、RMSProp七、Adam:RMSProp+Momentum八、Learning
- 【李宏毅机器学习笔记1】第一节 机器学习基本概念简介(上)
freezing001
深度学习深度学习机器学习
第一节机器学习基本概念简介(上)1.机器学习第一步:function机器学习MachineLearning≈LookingforFunctionML的三大任务:Regression(回归)+classification(分类)+strcturedlearning(createsomethingwithstructure)即让机器产生有结构的东西机器学习的model:带有未知parameters的f
- 李宏毅机器学习笔记-Lecture1
不废江河954
笔记深度学习学习机器学习学习人工智能
李宏毅机器学习笔记-Lecture1_续机器学习基本概念(下)PiecewiseLinearCurvesBeyondPiecewiseLinearCurvesSigmoidFunction各参数对Sigmoid的影响用Sigmoid拟合PiecewiseLinearCurvesNewModelwithMoreFeatures最终模型对各个参数的认识MLFramework构造模型构造损失函数找到最优
- 2021李宏毅机器学习笔记--7.1 backpropagation
guoxinxin0605
机器学习神经网络人工智能深度学习
2021李宏毅机器学习笔记--7.1backpropagation1摘要2步骤2.1chainrule链式法则2.2lossfunction2.2.1forwardpass2.2.2backwardpasscase1未知的两项在输出层case2未知的两项并不在输出层3小结及展望1摘要上文讲到可以用Backpropagation的方法对网络中的所有参数(w和b)进行更新,最终使totalloss达到
- 2021李宏毅机器学习笔记--16 Recursive Network
guoxinxin0605
网络神经网络
2021李宏毅机器学习笔记--16RecursiveNetwork递归网络摘要一、Application:SentimentAnalysis(应用:情绪分析)二、RecursiveNetwork三、RecursiveNetworkTensorNetwork四、Matrix-VectorRecursiveNetwork五、TreeLSTM六、MoreApplication(更多应用:句子关联)总结摘
- 2021李宏毅机器学习笔记--7 deep learning深度学习 与 fully connect feedforward network全连接前馈网络
guoxinxin0605
神经网络机器学习深度学习人工智能网络
2021李宏毅机器学习笔记--7deeplearning深度学习与fullyconnectfeedforwardnetwork全连接前馈网络摘要步骤step1NeuralnetworkFullyConnectFeedforwardNetwork全连接前馈网络step2goodnessofafunctionstep3Backpropagation小结与展望摘要近些年来。在各个领域,用到深度学习的地方
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始 
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S