Python学习Scrapy图片保存三,爬取网站整个分类下所有1万多张图片

该分类下总共14页,每页45个内容,如何提取下一页链接、每个小分类链接、小分类的标题和图片详情链接,这里使用到了crawlspider的筛选规则

得到图片链接如何按照小分类创建文件夹、存储

这个理我们实现了自定义文件名和文件夹,但是文件夹名称和小分类标题无关

这里借助ImagesPipeline中的def get_media_requests(self, item, info)实现在请求图片链接下载前,将title信息塞入meta中

在file_path中提取meta中title信息,就实现了按照小分类标题,自定义文件夹,提取url中信息作为文件名

代码如下

items

import scrapy

class YouguoItem(scrapy.Item):
    title = scrapy.Field()
    image_urls = scrapy.Field()

YouGuozz

import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from urllib import request
from YouGuo.items import YouguoItem

class YouguozzSpider(CrawlSpider):
    name = 'YouGuozz'
    allowed_domains = ['meinvtu123.net']
    start_urls = ['https://www.meinvtu123.net/a/56/list_56_1.html']
    #使用rules非常简单筛选出页面中下一页链接
    rules = (
        Rule(LinkExtractor(allow=r'.+a/56/list_56_.+\.html')),
        Rule(LinkExtractor(allow=r'.+a/56/\d+\.html'), follow=True, callback='parse_item')
    )

    def parse_item(self, response):

        #提取title,去除空h3
        title = response.xpath('//div[@class="Title111"][2]/h3/text()').extract()
        if title:
            title = title[-1]
        print(title)

        pic_urls = response.xpath('//div[@class="contenta"]/img/@src').extract()
        print(pic_urls)
        item = YouguoItem(title=title,image_urls=pic_urls)
        yield item
		#判断小分类的下一页
        next_urls = response.xpath('//div[@class="page"]/ul/a[last()]/@href').extract()[0]
        if next_urls:
            next_url = request.urljoin(response.url, next_urls)
            print(next_url)
            yield scrapy.Request(next_url, callback=self.parse_item)

重点在pipelines

from scrapy.pipelines.images import ImagesPipeline
from YouGuo.settings import IMAGES_STORE
from scrapy.http import Request
import os

class ImagesnamePipeline(ImagesPipeline):

    #调用这个函数这要是为了将title传给file_path使用,
    def get_media_requests(self, item, info):
        for image_url in item['image_urls']:
            #在请求img_url前,在请求中带上title参数
            yield Request(image_url,meta={'mid_item':item['title']})

    def file_path(self, request, response=None, info=None):
        #提取出title
        title = request.meta['mid_item']
        print(title)
        #依据title创建文件名
        image_store = os.path.join(IMAGES_STORE,title)
        if not os.path.exists(image_store):
            os.mkdir(image_store)
        #https://pic.meinvtu123.net/tupian/2019/allimg/190321/21133024-1-3B4.jpg
        #使用split('-')切割,提取最后一个作为文件名
        name = request.url.split('-')[-1]
        #构建完整存储路径并且返回
        filename = os.path.join(image_store, name)
        print(filename)
        return filename

settings

机器人协议、等待时间、headers就不多说了

IMAGES_STORE = r'E:\YouGuo'

ITEM_PIPELINES = {

   'YouGuo.pipelines.ImagesnamePipeline':1

}

Python学习Scrapy图片保存三,爬取网站整个分类下所有1万多张图片_第1张图片

你可能感兴趣的:(Scrapy)