- 基于TableStore的海量气象格点数据解决方案实战
阿里云云栖号
数据存储与数据库exceptionJava核心技术
前言气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点。气象数据中大量的数据是时空数据,记录了时间和空间范围内各个点的各个物理量的观测量或者模拟量,每天产生的数据量常在几十TB到上百TB的规模,且在爆发性增长。如何存储和高效的查询这些气象数据越来越成为一个难题。传统的方案常常采用关系型数据库加文件系统的方式实现这类气象数据的存储和实时查询,这种方案在可扩展性、可维护性和性能上都
- 大数据与物联网(IoT)的完美融合:驱动智能新时代
Echo_Wish
大数据高阶实战秘籍大数据物联网python人工智能
大数据与物联网(IoT)的完美融合:驱动智能新时代大家好,我是你们的大数据探索者Echo_Wish。今天,我们将深入探讨大数据与物联网(IoT)整合的重要性及其在现代科技中的应用。物联网通过连接大量智能设备,生成海量数据;而大数据技术则赋予我们从这些数据中提取有价值信息的能力。当两者结合在一起时,能够为各行各业带来革命性的变化,推动智能时代的到来。一、大数据与物联网的基本概念1.物联网(IoT)物
- 探索数据仓库自动化:ETL流程设计与实践
Echo_Wish
大数据高阶实战秘籍数据仓库自动化etl
探索数据仓库自动化:ETL流程设计与实践在大数据时代,数据仓库已成为企业数据管理和决策支持的核心工具。如何高效地提取、转换和加载数据(ETL),是数据仓库建设中的重要环节。本文将围绕数据仓库自动化的ETL流程设计展开,结合实际代码示例,探讨如何构建高效、稳定和可扩展的ETL解决方案。什么是ETL?ETL(Extract,Transform,Load)是指数据抽取、转换和加载,是数据仓库建设的重要步
- 企业信息查询系统的技术实现路径探析——以某大数据平台为例
探熵科技
大数据
引言在数字化转型加速的背景下,企业信息服务领域正经历着从传统工商查询向智能决策支持的演进。本文将以某企业信息查询系统为研究样本,解析其技术架构与实现路径,探讨大数据技术在企业服务场景中的落地应用。一、行业技术现状分析当前企业信息服务面临三大技术挑战:多源异构数据整合:需聚合工商数据(结构化)、招投标公告(半结构化)、企业新闻(非结构化)等差异化数据源数据实时性要求:企业经营状态变更、联系方式更新等
- 大数据面试系列之——Hadoop
潜心_守道
大数据面经面试大数据Hadoop
Hadoop的三个核心:HDFS(分布式存储系统)MapReduce(分布式计算系统)YARN(分布式资源调度)1.Hadoop集群的几种搭建模式1.单机模式:直接解压安装,不存在分布式存储系统2.伪分布式:NameNode和DataNode安装于同一个节点,无法体现分布式处理的优势。3.完全分布式:一个主节点,多个从节点,存在如果主节点宕机,集群就无法使用的缺点。4.高可用模式:多个主节点,多个
- python和java的优缺点-java有哪些python没有的优点?
weixin_37988176
Java和Python都是目前最火的后台语言。Java的使用时间更久,更成熟,Python语言更年轻,更便捷。两者各有各的优势:Python的优势:1.学起来简单,开发效率高,同样的功能用Java开发可能需要写200条代码,但是用Python只需要30~50条;2.在大数据挖掘方面有突出优势,是大数据分析首选的编程语言,Python可以让开发人员轻松表达概念,程序员维护和更新代码库更容易;3.Py
- 关于采用源始经为底层框架开发中文编程系统的可能性
太翌修仙笔录
deepseek超算法认知架构第三代人工智能算法人工智能
用中文写代码和Python哪个有前景在编程语言选择方面,**Python的发展前景明显优于中文编程语言**。以下是具体分析:---###一、核心结论**优先选择Python**,因为:1.**全球通用性**:Python是国际主流编程语言,适用于跨国协作和开源项目2.**就业市场需求**:Python在人工智能/大数据/Web开发等领域的岗位需求持续增长3.**技术生态优势**:拥有超过30万个第
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
程序猿阿伟
人工智能
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
人工智能深度学习
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 机器学习平台系列(一) - 初探 Jupyter Notebook 认证机制
窝窝和牛牛
机器学习平台PythonJupyterNotebookJupyterHub安全多租户
最近准备调研下JupyterNotebook的单用户安全机制(认证)以及如何实现多租户,以便集成到公司的云平台,进而作为基于大数据平台的机器学习平台的一部分。1.问题分析数据分析以及算法团队的同学使用JupyterNotebook进行数据分析和建模等工作,其工作流程如下所示:业务部门以组为单位申请一台物理服务器搭建Python环境,启动JupyterNotebook,每个同学创建自己的工程,进行代
- 上海市闵行区数据局调研云轴科技ZStack,共探数智化转型新路径
ZStack开发者社区
人工智能云计算科技大数据
为进一步深化人工智能、大模型技术的应用,推动区域数字经济高质量发展,2025年2月27日,上海市闵行区数据局局长吴畯率队赴上海云轴科技股份有限公司(以下简称“云轴科技ZStack”)开展专题调研。此次调研旨在深入了解企业需求,积极扶持企业发展,共同探索数字化转型的新路径。区大数据中心主任李一及相关业务科室负责人参与调研。云轴科技ZStack详细介绍了其在智算平台的实践探索与成功案例,充分展现了企业
- 学习Flink:一场大数据世界的奇妙冒险
狮歌~资深攻城狮
大数据
学习Flink:一场大数据世界的奇妙冒险嘿,朋友们!今天咱们来聊聊怎么学习Flink这个在大数据界超火的玩意儿相信很多小伙伴都听说过它,但不知道从哪儿开始下手,别愁,听我慢慢唠唠~一、学习Flink前的“装备”准备想象一下,你要去攀登一座高峰学习Flink也得先做好准备工作呀。首先,你得熟悉一门编程语言,Java或者Scala比较好。Java就像是你出门的常用交通工具大家都比较熟悉,找资料、学教程
- 从数据中挖掘洞见:初探数据挖掘的艺术与科学
Echo_Wish
大数据数据挖掘人工智能
从数据中挖掘洞见:初探数据挖掘的艺术与科学在当今信息爆炸的时代,我们每天都被海量数据所包围。这些数据不仅记录了我们每天的生活轨迹,还蕴含着无数潜在的模式和洞见。作为大数据领域的自媒体创作者,我笔名Echo_Wish,在这篇文章中,我将带领大家初探数据挖掘的奥秘,揭示如何从数据中寻找隐藏的模式。什么是数据挖掘?数据挖掘(DataMining),顾名思义,就是从大量数据中“挖掘”出有价值的信息和模式。
- 大数据环境(单机版) Flume传输数据到Kafka
凡许真
大数据flumekafka数据采集
文章目录前言一、准备二、安装三、配置环境变量四、修改配置4.1、kafka配置4.2、Flume配置五、启动程序5.1、启动zk5.2、启动kafka5.3、启动flume六、测试6.1、启动一个kafka终端,用来消费消息6.2、写入日志其他前言flume监控指定目录,传输数据到kafka一、准备flume-1.10.1kafka_2.11-2.4.1zookeeper-3.4.13二、安装使用
- 【大数据平台】大数据平台的云迁移策略
野老杂谈
大数据平台建设指南大数据大数据平台云计算云迁移数据同步
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️大数据平台建设指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台的核心技术和方法。⭐️《遇见Python:初识、了解与热恋》:涵盖了Pytho
- 云上大数据平台的优化:提升效率与可靠性的实践
Echo_Wish
大数据高阶实战秘籍大数据
云上大数据平台的优化:提升效率与可靠性的实践随着云计算和大数据技术的快速发展,越来越多的企业选择将其数据处理和分析工作迁移到云上。云上大数据平台以其灵活性、高效性和可扩展性,成为现代企业数据战略的重要组成部分。然而,随着数据规模的不断增长和业务需求的多样化,如何优化云上大数据平台以提升效率和可靠性,成为了一个亟需解决的问题。云上大数据平台的优化策略在本文中,我们将探讨几种常见的云上大数据平台优化策
- 在虚拟机上安装 Hadoop 全攻略
麻芝汤圆
spark大数据分析hadoop大数据分布式windowslinux服务器
在虚拟机上安装Hadoop是进入大数据处理和分析领域的重要一步。以下将详细讲解在常见虚拟机软件(如VMwareWorkstation、VirtualBox)中,于Linux虚拟机系统安装Hadoop的流程与要点。一、前期准备虚拟机软件与系统镜像:确保已正确安装VMwareWorkstation或VirtualBox等虚拟机软件,并且拥有目标操作系统的镜像文件(如UbuntuServerISO、Ce
- Mongodb数据库的基本语法及使用
璟*
Python
数据库MongoDB(芒果数据库)数据存储阶段文件管理阶段(.txt.doc.xls)优点:数据可以长期保存可以存储大量的数据使用简单缺点:数据一致性差数据查找修改不方便数据冗余度可能比较大数据库管理阶段优点:数据组织结构化降低了冗余度提高了增删改查的效率容易扩展方便程序调用,做自动化处理缺点:需要使用sql或者其他特定的语句,相对比较复杂几个概念数据:能够输入到计算机中并被识别处理的信息集合数据
- 132java ssm springboot基于大数据的吉林省农村产权交易数据分析可视化平台系统(源码+文档+运行视频+讲解视频)
QQ2279239102
springboot大数据数据分析开发语言mavenvue.js
文章目录系列文章目录目的前言一、详细视频演示二、项目部分实现截图三、技术栈后端框架springboot前端框架vue持久层框架MyBaitsPlus系统测试四、代码参考源码获取目的摘要:本文介绍了基于JavaSSM和SpringBoot开发的吉林省农村产权交易数据分析可视化平台系统,为农村产权交易市场提供决策支持。系统前端利用HTML、CSS和JavaScript构建直观的可视化界面,后端运用Ja
- 系统对接方案_浅谈RPA系统
weixin_39881760
系统对接方案
首先本文是有感而发,其次是我本身是大数据和人工智能领域产品多年从业者,并不局限于RPA领域,做过一些RPA项目也和客户沟通并且提供过顾问和咨询服务,所以有一定理解。从网上可见的大部分文章包括本问题下面的回答中,都可以看到,大部分是宏观回答,从狭义来说,RPA可以是一个软件工具、可以是一套系统也可以是一个平台;RPA可以让办公自动化、业务流程自动化。从广义来说,任何一个可被规则化且突发、未知情况少的
- 一文揭秘!Java 如何与 Elasticsearch 完美 “牵手”?
程序员顾茗
javaelasticsearch
引言本文适合有一定Java编程基础,且对搜索引擎技术感兴趣,尤其是希望在项目中运用Elasticsearch实现高效数据检索与分析功能的开发人员阅读。在当今大数据和高并发的时代,高效的数据检索与分析变得愈发关键。Elasticsearch作为一款强大的分布式搜索和分析引擎,受到了广泛青睐。而Java作为企业级开发的主流语言,如何与Elasticsearch无缝结合,发挥出最大效能呢?今天,就让我们
- 【AI深度学习基础】Pandas完全指南入门篇:数据处理的瑞士军刀 (含完整代码)
arbboter
人工智能人工智能深度学习pandas数据处理数据分析数据清洗数据分析效率提升
Pandas系列文章导航入门篇进阶篇终极篇一、引言在大数据与AI驱动的时代,数据预处理和分析是深度学习与机器学习的基石。Pandas作为Python生态中最强大的数据处理库,以其灵活的数据结构(如DataFrame和Series)和丰富的功能(数据清洗、转换、聚合等),成为数据科学家和工程师的核心工具。Pandas以Series(一维标签数组)和DataFrame(二维表格)为核心数据结构,提供高
- 对“预训练”的理解
衣衣困
深度学习神经网络自然语言处理
预训练有什么用传统的机器学习是偏数学的,对数据的量不做过多要求,而深度学习的项目通常是有大量的数据可供使用。在平常的任务或者项目中,我们可能并没有大量数据,只有少量数据,在这时我们就可以通过“借用”有大数据支持的模型的参数,作为基准,这样就能提高效率和准确率。因为他们神经网络的浅层是相似的,也就是说,在任务相似的情况下,可以用已有的模型即“预训练”好的模型参数实现小数据量的模型训练。预训练可以节省
- Java 大视界 -- Java 大数据机器学习模型的可解释性增强技术与应用(107)
青云交
大数据新视界Java大视界大数据java可解释性AISHAPLIME因果推理可视化交互
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- Java 大数据在智慧环保污染源监测与预警中的应用(104)
青云交
大数据新视界Java大视界java大数据智慧环保污染源监测实时预警FlinkLSTM
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- Java 大数据分布式文件系统的性能调优实战(101)
青云交
大数据新视界Java大视界java大数据Java大数据分布式文件系统性能调优HDFSImpala
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 深入剖析 Java 大数据实时 ETL 中的数据质量保障策略(97)
青云交
大数据新视界Java大视界Java大数据实时ETL数据质量保障数据清洗数据校验机器学习算法统计方法
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 绿色大数据:Java 技术在节能减排中的应用与实践(90)
青云交
大数据新视界Java大视界java大数据绿色大数据节能减排算法优化分布式计算资源管理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 大数据伦理与法律:Java 技术在合规中的作用与挑战(87)
青云交
大数据新视界Java大视界java大数据大数据伦理大数据法律数据加密访问控制应对策略
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 区块链赋能 Java 大数据:数据可信与价值流转(84)
青云交
大数据新视界Java大视界java大数据数据可信价值流转智能合约共识机制区块链
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo