Multilabel classification(多标签分类 SVM) -- sklearn

这个例子模拟了多标签文档分类问题。基于以下过程随机生成数据集:

  • pick the number of labels: n ~ Poisson(n_labels)    提取的标签的数量:n~泊松(n_labels)
  • n times, choose a class c: c ~ Multinomial(theta)    n次,选择类c:c~多项式(theta)
  • pick the document length: k ~ Poisson(length)        提取该文件的长度为k~泊松分布(length)
  • k times, choose a word: w ~ Multinomial(theta_c)   k次:选择词:w~多项式(theta_c)

       在上述过程中,使用拒绝抽样来确保n大于2,并且文档长度永远不会为零。同样,我们拒绝已经被选择的类。分配给这两个类的文档被两个有色圆圈包围。

      分类的方法是将PCA和CCA发现的前两个主成分投影到可视化目的,然后使用sklearn.multiclass.OneVsRestfier元助词,使用两个带有线性核的SVCS来学习每个类的判别模型。注意,PCA用于执行无监督的降维,而CCA用于执行有监督的降维。

     注:在图中,“未标记样本”并不意味着我们不知道标签(就像半监督学习中的那样),而只是样本没有标签。

Multilabel classification(多标签分类 SVM) -- sklearn_第1张图片

 

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_multilabel_classification
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import LabelBinarizer
from sklearn.decomposition import PCA
from sklearn.cross_decomposition import CCA


def plot_hyperplane(clf, min_x, max_x, linestyle, label):
    # get the separating hyperplane
    w = clf.coef_[0]
    a = -w[0] / w[1]
    xx = np.linspace(min_x - 5, max_x + 5)  # make sure the line is long enough
    yy = a * xx - (clf.intercept_[0]) / w[1]
    plt.plot(xx, yy, linestyle, label=label)


def plot_subfigure(X, Y, subplot, title, transform):
    if transform == "pca":
        X = PCA(n_components=2).fit_transform(X)
    elif transform == "cca":
        X = CCA(n_components=2).fit(X, Y).transform(X)
    else:
        raise ValueError

    min_x = np.min(X[:, 0])
    max_x = np.max(X[:, 0])

    min_y = np.min(X[:, 1])
    max_y = np.max(X[:, 1])

    classif = OneVsRestClassifier(SVC(kernel='linear'))
    classif.fit(X, Y)

    plt.subplot(2, 2, subplot)
    plt.title(title)

    zero_class = np.where(Y[:, 0])
    one_class = np.where(Y[:, 1])
    plt.scatter(X[:, 0], X[:, 1], s=40, c='gray', edgecolors=(0, 0, 0))
    plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b',
                facecolors='none', linewidths=2, label='Class 1')
    plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange',
                facecolors='none', linewidths=2, label='Class 2')

    plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--',
                    'Boundary\nfor class 1')
    plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.',
                    'Boundary\nfor class 2')
    plt.xticks(())
    plt.yticks(())

    plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x)
    plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y)
    if subplot == 2:
        plt.xlabel('First principal component')
        plt.ylabel('Second principal component')
        plt.legend(loc="upper left")


plt.figure(figsize=(8, 6))

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
                                      allow_unlabeled=True,
                                      random_state=1)

plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca")

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
                                      allow_unlabeled=False,
                                      random_state=1)

plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca")

plt.subplots_adjust(.04, .02, .97, .94, .09, .2)
plt.show()

 

你可能感兴趣的:(机器学习)