UVA 1386 cellular automaton [循环矩阵+矩阵快速幂]【数学】

题目链接 : 太长了_传送阵<<–

————————————.
A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number
of discrete time steps according to a set of rules that describe the new state of a cell based on the states
of neighboring cells. The order of the cellular automaton is the number of cells it contains. Cells of the
automaton of order n are numbered from 1 to n.
The order of the cell is the number of different values it may contain. Usually, values of a cell of
order m are considered to be integer numbers from 0 to m − 1.
One of the most fundamental properties of a cellular automaton is the type of grid on which it
is computed. In this problem we examine the special kind of cellular automaton — circular cellular
automaton of order n with cells of order m. We will denote such kind of cellular automaton as n, m −
automaton.
A distance between cells i and j in n, m-automaton is defined as min(|i − j|, n − |i − j|). A denvironment
of a cell is the set of cells at a distance not greater than d.
On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i
after d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo
m.
The following picture shows 1-step of the 5,3-automaton.
UVA 1386 cellular automaton [循环矩阵+矩阵快速幂]【数学】_第1张图片
The problem is to calculate the state of the n, m-automaton after k d-steps.
Input
The input file contains several test cases, each of them consists of two lines, as described below.
The first line of the input contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500, 1 ≤ m ≤
1000000, 0 ≤ d < n
2
, 1 ≤ k ≤ 10000000). The second line contains n integer numbers from 0 to m − 1
— initial values of the automaton’s cells.
Output
For each test case, write to the output, on a line by itself, the values of the n, m-automaton’s cells after
k d-steps.
Sample Input
5 3 1 1
1 2 2 1 2
5 3 1 10
1 2 2 1 2
Sample Output
2 2 2 2 1
2 0 0 2 2

————————————————.
题目大意 :
就是有一个N这么大的环 现在有这样的操作每次选取每个数及其左右d个距离内的所有数的和 对m取模之后作为这个数的新值 问你K次操作后 每个数都是多少

解题思路 :
首先根据题中的 图片 观察了一下 发现这道题用矩阵快速幂能够解决
以题目图片为例 能构造出如下的矩阵
[1 1 0 0 1] 这 [1] = [2]
[1 1 1 0 0] 里 [2] = [2]
[0 1 1 1 0] 是 [2] = [2]
[0 0 1 1 1] 乘 [1] = [2]
[1 0 0 1 1] 号 [2] = [1]

然后写了一发矩阵快速幂
写完了 发现程序根本运行不了
找了N久BUG 最后在Q巨的指导下才知道 因为数组太大500*500 导致爆栈了
然后把 函数改成引用 就能运行了 但是还是不能A掉题

然后又找了N久的BUG 换了下思路 发现越来越乱

最后看了一波题解 才知道(如下)这玩意叫做循环矩阵
[1 1 0 0 1]
[1 1 1 0 0]
[0 1 1 1 0]
[0 0 1 1 1]
[1 0 0 1 1]

它的性质可以看着篇文章 后面的部分 目录里找矩阵快速幂就行了
http://blog.csdn.net/qq_33184171/article/details/51488462

然后终于优化到了N^2
结果最后的结果 莫名的PE PE PE!!!! PE 了5 发我也是醉了 最醉了的是 到最后我也没明白为什么PE
然后找了一发大神的代码 直接AC了。。。
格式没问题啊,,,
UVA 1386 cellular automaton [循环矩阵+矩阵快速幂]【数学】_第2张图片

然后就没有然后了 这题 做的太闹心了 在群里问问题的时候还被 菊菊们讽刺了一波。。。

算了 最后附上本题代码
————————-.

#include   
#include   
#include   
#include   
using namespace std;  
typedef long long ll;  
const int maxn = 505;  

int n, m, d, k;  
ll ans[maxn], matrix[maxn];  
ll c[maxn+5];  

void mul(ll a[], ll b[]) {  
    memset(c, 0, sizeof(c));  
    for (int i = 0; i < n; i++)   
        for (int j = 0; j < n; j++)  
            c[i] += a[j] * b[(i-j+n) % n];  
    for (int i = 0; i < n; i++)   
        b[i] = c[i] % m;  
}  

int main() {  
    while (scanf("%d%d%d%d", &n, &m, &d, &k) != EOF) {  
        memset(ans, 0, sizeof(ans));  
        memset(matrix, 0, sizeof(matrix));  
        for (int i = 0; i < n; i++)   
            cin>>ans[i];  

        matrix[0] = 1;  
        for (int i = 1; i <= d; i++)   
            matrix[i] = matrix[n - i] = 1;  

        while (k) {  
            if (k & 1)   
                mul(matrix, ans);  
            mul(matrix, matrix);  
            k >>= 1;  
        }  

        for (int i = 0; i < n - 1; i++)   
            printf("%lld ", ans[i]);  
        printf("%lld\n", ans[n-1]);  
    }  
    return 0;  
}  

你可能感兴趣的:(数学,=====,各OJ,=====)