- YOLO系列版本迭代:从YOLOv1到YOLOv11的技术演进
金外飞176
技术前沿目标跟踪人工智能计算机视觉
YOLO系列版本迭代:从YOLOv1到YOLOv11的技术演进YOLO(YouOnlyLookOnce)系列目标检测算法自2016年首次发布以来,凭借其高效的实时检测能力,迅速成为计算机视觉领域的热门研究方向之一。本文将详细回顾YOLO系列从v1到v11的版本迭代过程,分析每个版本的技术改进、性能提升以及应用场景。1.YOLOv1:开创性的单阶段检测算法YOLOv1是目标检测领域的一个重要里程碑,
- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- 基于深度学习YOLOv10的PCB板缺陷检测系统(附完整资源+PySide6界面+训练代码)
人工智能_SYBH
深度学习YOLO人工智能目标检测python
引言:在现代制造业中,电子元件和PCB(印刷电路板)是非常重要的基础设施。PCB缺陷检测是生产过程中至关重要的一步。传统的缺陷检测方法主要依靠人工检查,这不仅效率低,而且容易受到人眼疲劳的影响。随着深度学习技术的不断发展,基于深度学习的自动化缺陷检测已成为研究的热点,尤其是在计算机视觉领域。YOLO(YouOnlyLookOnce)系列算法凭借其高速和高精度的优势,成为了目标检测领域的佼佼者。本文
- 三种方式实现人车流统计(yolov5+opencv+deepsort+bytetrack+iou)
Jayson God
人工智能c++yolov5opencv算法人工智能
一、运行环境1、项目运行环境如下2、CPU配置3、GPU配置如果没有GPUyolov5目标检测时间会比较久二、编程语言与使用库版本项目编程语言使用c++,使用的第三方库,onnxruntime-linux-x64-1.12.1,opencv-4.6.0opencv官方地址Releases-OpenCVopencvgithub地址https://github.com/opencv/opencv/tr
- YOLOv1 损失函数
余将董道而不豫兮
YOLO神经网络python深度学习人工智能机器学习计算机视觉
相关文章YOLOv1论文简要YOLOv1数据集加载YOLOv1损失函数YOLOv1模型构建与训练YOLOv1目标检测项目地址:YOLOv1VOC2007笔者训练的权重地址:阿里云盘分享10秒文章速览对于YOLOv1的损失函数,使用Python程序实现损失函数的计算关于损失函数的计算,在《YOLOv1论文简要》一文中已经进行了较详细的解释。只不过,在本文中,需要以代码的形式表达出来平方和误差在YOL
- Python实战:解析labelme标注数据——如何将数据转换为COCO格式
程序员杨弋
Python全栈工程师学习指南python开发语言
在计算机视觉中,标注数据是非常重要的,而Labelme是一个简单易用的自由标注工具,被广泛应用于图像语义分割、目标检测、实例分割等领域,然而标注数据并不总是以我们需要的格式存在,因此需要进行适当的转换,本文将详细介绍如何将Labelme标注数据转换为COCO格式。首先需要安装相关的Python库,包括labelme、numpy、matplotlib、pillow等,在安装完成后设置数据路径,并读取
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 【深度学习】计算机视觉(CV)-目标检测-SSD(Single Shot MultiBox Detector)—— 单次检测多框检测器
IT古董
深度学习人工智能计算机视觉深度学习目标检测
SSD(SingleShotMultiBoxDetector)——单次检测多框检测器1️⃣什么是SSD?SSD(SingleShotMultiBoxDetector)是一种用于目标检测(ObjectDetection)的深度学习模型,由WeiLiu等人在2016年提出。它采用单阶段(SingleStage)方法,能够直接从图像中检测多个对象,并输出类别和边界框,比传统的两阶段方法(如FasterR
- 【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测
XD742971636
深度学习机器学习深度学习YOLO目标检测
介绍一个酷炫的目标检测方式:论文:https://arxiv.org/abs/2401.17270代码:https://github.com/AILab-CVC/YOLO-World文章目录摘要Introduction第2章相关工作2.1传统目标检测2.2开放词汇目标检测第3章方法3.1预训练公式:区域-文本对3.2模型架构3.3可重参数化的视觉-语言路径聚合网络(RepVL-PAN)3.4预训练
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- 基于YOLOv5深度学习的木材表面缺陷检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
随着工业自动化的发展,木材加工行业对产品质量的要求日益提高。木材表面缺陷的检测是确保产品质量的重要环节。传统的人工检测方式不仅费时费力,而且容易受到人为因素的影响。基于深度学习的目标检测技术,尤其是YOLOv5,凭借其优越的实时性和准确性,成为木材表面缺陷检测的有效工具。本博客将详细介绍如何构建一个基于YOLOv5的木材表面缺陷检测系统,包括数据集准备、模型训练、UI界面开发及完整代码实现。目录目
- 焦损函数(Focal Loss)与RetinaNet目标检测模型详解
人工智能
焦损函数(FocalLoss)与RetinaNet目标检测模型详解阅读时长:19分钟发布时间:2025-02-14近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目前,精度最高的目标检测器大多基于由R-CNN推广的两阶段方法,即对稀疏的候选目标位置集应用分类器。相比之下,在规则、密集的可
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- 模型实战(19)之 从头搭建yolov9环境+tensorrt部署+CUDA前处理 -> 实现目标检测
明月醉窗台
#深度学习实战例程目标检测人工智能计算机视觉图像处理YOLO
从头搭建yolov9环境+tensorrt部署实现目标检测yolov9虚拟环境搭建实现训练、推理与导出导出onnx并转为tensorrt模型Python\C++-trt实现推理,CUDA实现图像前处理文中将给出详细实现源码python、C++效果如下:output_video_11.搭建环境拉下官方代码根据配置下载虚拟环境所需包详细步骤如下:
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- 计算机视觉(Computer Vision,CV)四大基本任务--分类、检测、定位、分割
明月光舞
计算机视觉计算机视觉目标检测深度学习
文章目录前言一、计算机视觉任务一:目标分类常用数据集常见网络结构二、计算机视觉任务二:目标定位三、计算机视觉任务三:目标检测常用数据集常见网络结构四、计算机视觉任务四:目标分割常用数据集常见网络结构前言计算机视觉(ComputerVision,CV)是一门研究如何让机器具备“看”的能力的学科,以人或动物的视觉能力为参照,通过计算机对视觉数据(图像、视频等)的处理、学习、推理判断,复现出、模拟出甚至
- rk3588部署yolov8视频目标检测教程
今夕是何年,
视觉算法部署YOLO目标检测人工智能
目录1.环境配置1.1训练和导出onnx环境(电脑端执行)1.2导出rknn环境(电脑端执行)2.训练部分(电脑端执行)2.1训练脚本(电脑端执行)3.onnx转rknn(电脑端执行)1.环境配置1.1训练和导出onnx环境(电脑端执行)#使用conda创建一个python环境condacreate-ntorchpython=3.9#激活环境condaactivatetorch#安装yolov8p
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- YOLO各版本原理和优缺点解析
Ash Butterfield
计算机视觉
YOLO(YouOnlyLookOnce)是一种实时目标检测算法,以其高速度和较高精度著称。以下是各版本的详细介绍及优缺点分析:1.YOLOv1(2016年)原理:将输入图像划分为S×SS\timesSS×S的网格,每个网格预测多个边界框和类别置信度。使用单个神经网络直接对图像进行前向传播预测边界框和类别标签。优点:速度快,适合实时应用。模型结构简单,易于实现和训练。缺点:对小目标检测效果差,容易
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- 学习系列二:常用目标检测的格式转换脚本文件txt,json等
小啊磊_Vv
目标检测YOLO人工智能计算机视觉json
常用目标检测的格式转换脚本文件txt,json等文章目录常用目标检测的格式转换脚本文件txt,json等前言一、json格式转yolo的txt格式二、yolov8的关键点labelme打的标签json格式转可训练的txt格式三、yolo的目标检测txt格式转coco数据集标签的json格式四、xml格式转yolo数据集标签的txt格式五、根据yolo的目标检测训练的最好权重推理图片六、根据yolo
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- 目标检测:yolo格式txt转换成COCO格式json
詹姆斯德
格式转换目标检测YOLOjson
修改对应文件路径即可,其他根据txt或者希望生成的json做轻微调整#-*-coding:utf-8-*-importosimportjsonfromPILimportImagecoco_format_save_path="/home/admin1/data/LVIS"#要生成的标准coco格式标签所在文件夹yolo_format_classes_path="/home/admin1/data/L
- 基于深度学习YOLOv5的海洋动物检测系统
深度学习&目标检测实战项目
深度学习YOLO目标跟踪人工智能目标检测计算机视觉
1.引言随着人工智能技术的快速发展,深度学习在图像处理领域的应用逐渐展现出强大的能力,尤其是在目标检测任务上。YOLO(YouOnlyLookOnce)系列模型作为一种高效的目标检测算法,以其实时性和高精度在许多领域得到了广泛应用。海洋动物的检测任务也因此受益,借助深度学习模型,我们可以实时、自动地检测海洋中的动物,有助于海洋生态研究、环境保护以及水下监测等多个领域。本文将详细介绍如何基于YOLO
- DeepSeek计算机视觉(Computer Vision)基础与实践
Evaporator Core
#DeepSeek快速入门计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)是人工智能领域的一个重要分支,专注于让计算机理解和处理图像和视频数据。计算机视觉技术广泛应用于图像分类、目标检测、图像分割、人脸识别等场景。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练计算机视觉模型。本文将详细介绍如何使用DeepSeek进行计算机视觉的基础与实践,并通过代码示例帮助你掌握这些技巧。1.计算机视觉的基本概念计算机视觉的
- 基于YOLOv5、YOLOv8和YOLOv10的车站行李监控系统:深度学习应用与实现
深度学习&目标检测实战项目
YOLO深度学习人工智能目标检测目标跟踪
引言在现代车站,行李监控是一项至关重要的安全任务。随着交通安全要求的不断提高,尤其是在车站等人流密集的场所,及时检测和识别行李不仅有助于防止行李遗失或误取,还能有效地减少潜在的安全威胁。传统的人工检查方法已经无法满足快速响应和高精度的需求,而基于深度学习的目标检测技术,特别是YOLO(YouOnlyLookOnce)系列算法,成为了高效解决此类问题的理想选择。YOLO系列算法(包括YOLOv5、Y
- 使用rembg库提取图像前景(移除图像背景),并构建web应用
万里鹏程转瞬至
深度学习python库使用深度学习高级实践前端深度学习在线抠图
1、图像中的前景与背景在深度学习图像处理领域中,图像内容可以被定义为前景与背景两部分,其中感兴趣图形的被定义为前景,不感兴趣区域的背景。如在目标检测中,被框出来的目标则被定义为前景。此外,前景识别也可以理解外显著性识别,具体可以查看https://zhuanlan.zhihu.com/p/441836726。本博文所涉及的rembg库,就是基于显著性提取模型u2net所实现的。在传统图像处理中,前
- YOLOv8改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
Limiiiing
YOLOv8改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍本文主要利用GOLD-YOLO中的颈部结构优化YOLOv8的网络模型。GOLD-YOLO颈部结构中的GD机制借鉴了全局信息融合的理念,通过独特的模块设计,在不显著增加延迟的情况下,高效融合不同层级的特征信息。将其应用于YOLOv8的改进过程中,能够使模型更有效地整合多尺度特征,减少信息损失,强化对不同大小目标物体的特征表达,从而提升模型在复杂场景下对目标物体的检测精度与定位准确性。专栏
- F-PointNet 论文阅读理解
咸鱼和白菜
目标检测f-pointnet点云目标检测
总述本文提出一种方法:使用成熟的2D的目标检测方法中cnn提供的regionproposal和3D的目标检测定位(也就是pointnet处理点云),将二者结合利用RGB-D映射和一个叫做锥体(Frustum)?形成一个3D的box参数进行输出。本文主要贡献就是在“一个叫做锥(Frustum)”的使用上结合2D的regionpropos和点云进行3D的分割和box的输出。为方便理解与书写,按照文中顺
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$