keras基本使用示例一

初步了解了tensorflow以后,发现了基于tensorflow的非常简洁的深度学习框架keras,只需要短短几行代码就可以编写网络模型:

下面是示例一,最简单的使用例子,采用最基本的序贯模型:

import keras
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
#输入训练数据 keras接收numpy数组类型的数据
x=np.array([[0,1,0],
            [0,0,1],
            [1,3,2],
            [3,2,1]])
y=np.array([0,0,1,1]).T
#最简单的序贯模型,序贯模型是多个网络层的线性堆叠
simple_model=Sequential()
#dense层为全连接层
#第一层隐含层为全连接层 5个神经元 输入数据的维度为3
simple_model.add(Dense(5,input_dim=3,activation='relu'))
#第二个隐含层 4个神经元
simple_model.add(Dense(4,activation='relu'))
#输出层为1个神经元
simple_model.add(Dense(1,activation='sigmoid'))
#编译模型,训练模型之前需要编译模型
#编译模型的三个参数:优化器、损失函数、指标列表
simple_model.compile(optimizer='sgd',loss='mean_squared_error')
#训练网络 2000次
#Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用fit函数
simple_model.fit(x,y,epochs=2000)
#应用模型 进行预测
y_=simple_model.predict_classes(x[0:1])
print("[0,1,0]的分类结果:"+str(y[0]))

你可能感兴趣的:(tensorflow)