- Linux下Redis安装配置全攻略(2024最新版)
「已注销」
linuxredis运维
手残党也能搞定的Redis安装指南还在为Linux安装Redis发愁?(别问我怎么知道的)今天这个保姆级教程绝对能让你爽到飞起!从零开始到完全可用只要10分钟,连小白都能轻松上手!(信我,真的)环境准备(超级重要)先确认你的Linux发行版(敲黑板!):#查看系统信息cat/etc/os-release推荐系统:Ubuntu20.04/22.04LTSCentOS7/8RockyLinux8/9安
- 模块三:现代C++工程实践(4篇)第一篇《C++模块化开发:从Header-only到CMake模块化》
AI迅剑
c++开发语言cmake
引言:现代C++工程化的核心挑战(终极扩展版)在云计算与物联网时代,C++项目规模呈指数级增长。传统Header-only开发模式暴露出编译效率低下、依赖管理混乱、版本冲突频发等致命问题。本文通过CMake3.22+Conan2.0工具链的深度集成,结合5个真实工业案例和200+行配置代码,系统阐述:Header-only库的模块化改造(含性能数据、内存分析)CMake高级配置技巧(目标属性、接口
- 5、Spring AI(MCPServer+MCPClient+Ollama)开发环境搭建_第一篇
虾条_花吹雪
#开发环境搭建ai人工智能spring数据库学习
前言:该开发环境是在3、后端持久化(SpringBoot3.5.0+MybatisPlus3.5.5+mysql8.4.0)环境搭建上进行改造的,用到了后端持久化,主要改造的地方为数据库把email字段改为height(身高),该开发环境主要是设计了一个灌篮高手篮球经理对球队成员简单的查询,通过这个场景把MCPServer、MCPClient、大模型、用户客户端相互的职责和关系简单捋一下,其他的改
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- 【AI智能推荐系统】第二篇:深度学习在推荐系统中的架构设计与优化实践
DeepFaye
人工智能深度学习
第二篇:深度学习在推荐系统中的架构设计与优化实践提示语:“从Wide&Deep到Transformer,深度推荐模型如何突破性能瓶颈?本文将揭秘Netflix、淘宝都在用的深度学习推荐架构,手把手教你设计高精度推荐系统!”目录深度学习推荐系统的核心优势主流深度学习推荐架构解析2.1Wide&Deep模型2.2DeepFM与xDeepFM2.3神经协同过滤(NCF)2.4基于Transformer的
- 基于Elasticsearch的短视频平台个性化推荐系统设计与实现
亲爱的非洲野猪
elasticsearch音视频推荐算法
在当今内容爆炸的时代,个性化推荐系统已成为短视频平台的核心竞争力之一。本文将详细介绍如何利用Elasticsearch(ES)构建一个高效、可扩展的短视频个性化推荐系统。一、系统架构概述我们的推荐系统将采用混合推荐策略,结合协同过滤、内容相似度和热度推荐等多种方法。Elasticsearch作为核心搜索引擎和数据存储,将承担以下职责:用户画像存储与查询视频内容索引与检索实时行为日志分析推荐结果计算
- Java的神奇绘图功能:画一条直线
一、背景引入第一篇介绍了如何设置一个简单的登录界面,今天就来讲讲界面JFrame的其他功能:绘图,但作为向递归分形的过渡内容,我们今天不需要画出多复杂多精美的图案,只需要在界面上能够画出一条简单的直线即可。二、问题思考1.摆在眼前的问题与资源需要解决的问题:如何实现画一条直线?可以解决问题的资源:有关Java的一些基础知识和简单的界面基础2.怎么画一条直线(1)猜想:画一条直线的可能流程首先是画一
- 协同过滤算法:挖掘用户偏好,精准推荐商品
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍协同过滤(CollaborativeFiltering,CF)作为推荐系统中的重要技术,其核心思想是利用用户和物品间的行为数据,挖掘用户隐性偏好,从而实现精准推荐。自20世纪90年代提出以来,协同过滤算法已经在电子商务、社交媒体、音乐视频等多个领域中广泛应用,取得了显著的推荐效果。协同过滤算法主要分为基于用户的协同过滤和基于物品的协同过滤两种。基于用户的协同过滤通过比较用户间的相似性,
- 结构学习的理论
刘海东刘海东
机器人人工智能
结构学习的理论作者:刘海东,中国广东技术师范大学摘要这是第一篇研究结构学习的理论的论文,第一个部分概括了结构学习的整体构想,第二部分提出了结构学习的环境逻辑宇宙,第三、第四、第五部分阐述了中央图处理器、软件图、图思维的理论,以中央图处理器为机器脑,以软件图为机器身体,以图思维为机器生命活动,第六部分说明了机器生命和结构学习的现有研究成果。全文的主旨是向人类社会推荐机器生命结构学习的思想。关键词:结
- 协同过滤推荐算法
禺垣
机器学习笔记算法机器学习推荐算法算法机器学习
协同过滤(CollaborativeFiltering)是推荐系统中最经典的算法之一,其核心思想是“物以类聚,人以群分”,即通过分析用户的历史行为数据,找到与目标用户相似的用户群体或相似的物品,从而为目标用户推荐他们可能感兴趣的物品。一、基于用户的协同过滤(User-BasedCF)核心思想:找到与目标用户兴趣相似的其他用户(“邻居”),将这些邻居喜欢的物品推荐给目标用户。步骤:s1.计算用户
- 零基础学python张志强pdf_零基础学Python
weixin_39707725
前言第一篇Python语言基础第1章进入Python的世界1.1Python的由来1.2Python的特色1.3第一个Python程序1.4搭建开发环境1.4.1Python的下载和安装1.4.2交互式命令行的使用1.5Python的开发工具1.5.1PyCharm的使用1.5.2EclipseIDE的介绍1.5.3EditPlus编辑器环境的配置1.6不同平台下的Python1.7小结1.8习题
- 现代 JavaScript (ES6+) 入门到实战(八):总结与展望 - 成为一名现代前端开发者
恭喜你坚持到了最后!在过去的七篇文章中,我们一起踏上了一段从“传统”到“现代”的JavaScript进化之旅。我们告别了那些曾经让我们头疼的“怪异行为”,拥抱了一套更强大、更优雅、更符合工程化思想的工具集。现在,是时候回顾我们的旅程,并展望前方的道路了。一、我们的进化之路:知识图谱回顾让我们将学到的核心知识点串联起来,形成一张清晰的“进化图谱”。如果你错过了之前的任何一篇,可以点击链接回顾:第一篇
- Prompt 精通之路(一)- AI 时代的新语言:到底什么是 Prompt?为什么它如此重要?
程序员阿超的博客
Prompt精通之路:从零基础到AI高效玩家人工智能promptPrompt新手指南提示词入门AI指令ChatGPTdeepseek
AI时代的新语言:到底什么是Prompt?为什么它如此重要?标签:#Prompt新手指南#提示词入门#AI指令#人工智能#ChatGPTPrompt精通之路:系列文章导航第一篇:AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:
- 深度探索 Py2neo:用 Python 玩转图数据库 Neo4j
萧鼎
python基础到进阶教程python数据库neo4j
随着社交网络、推荐系统、知识图谱等应用的普及,图数据库越来越成为解决关系复杂数据问题的重要武器。作为图数据库中的佼佼者,Neo4j凭借其强大的性能和灵活的数据模型,被广泛应用于各种关联密集型场景。而在Python生态中,py2neo是使用最广泛的Neo4j客户端库之一,它简洁直观,封装度高,能够让你在Python中像操作对象一样操作图数据。本文将全面介绍py2neo的使用方法与设计理念,帮助你快速
- Vue2 视频推荐页面:完整布局与动态数据实现 用 Vue2 开发视频推荐页面:简洁优雅的实现方式 Vue2 项目实战:多分类动态内容展示的实现 用 Vue2 打造视频推荐系统:从零开始完整教程 Vu
南北极之间
web前端特效源码cssjavascript网页设计html前端网站首页视频网站
效果图【定制化开发服务,让您的项目领先一步】如有需求,直接私信留下您的联系方式。谢谢。我的邮箱:
[email protected]完整代码以下包括导航栏、分类切换、推荐内容展示等。使用虚拟假数据模拟真实场景,图片用占位符代替。代码实现<html
- ElasticCTR:一键部署的分布式CTR预估解决方案
萧桔格Wilbur
ElasticCTR:一键部署的分布式CTR预估解决方案ElasticCTRElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且
- 圈子系统公众号app小程序系统源码公众号+圈子小程序:如何用“内容+社交”打造用户闭环生态?
前端
圈子系统:构建"交流→共鸣→成长"的进阶生态一、系统设计理念演进1.0基础交流层话题发布/回复功能基础点赞评论互动简单分类标签系统2.0情感共鸣层情绪标签识别(AI分析内容情感倾向)共鸣指数算法(根据互动深度计算)志同道合推荐系统3.0成长体系层多维能力评估模型个性化成长路径成就勋章系统二、核心技术实现方案1.共鸣引擎#共鸣度计算算法示例defcalculate_resonance(topic):
- Prompt 精通之路(四)- AI 赋能:10 个超实用的 Prompt 模板,覆盖写作、编程、学习和办公
程序员阿超的博客
Prompt精通之路:从零基础到AI高效玩家人工智能prompt学习Prompt模板AI工作流ChatGPT应用生产力工具
Prompt精通之路:系列文章导航第一篇:[本文]AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:AI赋能:10个超实用的Prompt模板,覆盖写作、编程、学习和办公第五篇:构建你的“AI指令系统”:超越简单提问的CRISPE
- Prompt 精通之路(五)- 构建你的“AI 指令系统”:超越简单提问的 CRISPE 与 APE 框架
Prompt精通之路:系列文章导航第一篇:[本文]AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:AI赋能:10个超实用的Prompt模板,覆盖写作、编程、学习和办公第五篇:构建你的“AI指令系统”:超越简单提问的CRISPE
- FAISS 简介及其与 GPT 的对接(RAG)
言之。
AIfaissgpteasyui
什么是FAISS?FAISS(FacebookAISimilaritySearch)是FacebookAI团队开发的一个高效的相似性搜索和密集向量聚类的库。它主要用于:大规模向量相似性搜索高维向量最近邻检索向量聚类https://github.com/facebookresearch/faissFAISS特别适合处理高维向量数据,能够快速找到与查询向量最相似的向量,广泛应用于推荐系统、图像检索、自
- 产品背景知识——在线推理和离线推理
爱吃芝麻汤圆
#产品背景知识推理
产品背景知识——在线推理和离线推理一、核心区别:从4个维度对比1.数据处理方式与时效性在线推理(实时推理)数据特点:处理实时流入的单条或小批量数据(如用户点击、交易请求)。时效性要求:需在毫秒级到秒级内返回结果,延迟直接影响用户体验或业务决策。典型场景:电商推荐系统(用户浏览商品时实时推荐)、金融风控(交易时实时欺诈检测)。离线推理(批量推理)数据特点:处理历史累积的大规模数据集(如TB级日志、数
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 论文学习_SoK: An Essential Guide For Using Malware Sandboxes In Security Applications: Challenges, Pitfa
kitsch0x97
学习
0.文章概述恶意软件沙箱尽管在安全应用程序中带来许多优势,但其复杂的选择、配置和使用过程常让新用户不知所措,甚至可能导致错误的部署,进而对安全分析结果产生负面影响。目前,缺乏系统化的指导来帮助用户正确选择和应用沙箱工具,这种知识空白阻碍了沙箱在不同研究领域中的有效应用。为了填补这一知识空白,研究团队系统分析了84篇关于x86/64恶意软件沙箱的学术论文,并提出了一种新颖的框架,以简化沙箱组件和操作
- Prompt 精通之路(七)- 你的终极 AI 宝典:Prompt 精通之路系列汇总
程序员阿超的博客
Prompt精通之路:从零基础到AI高效玩家人工智能promptPrompt指南AI学习资源速查手册ChatGPT系列总结
你的终极AI宝典:Prompt精通之路系列汇总标签:#Prompt指南#AI学习资源#速查手册#ChatGPT#系列总结Prompt精通之路:系列文章导航第一篇:AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:AI赋能:10个
- 小红书笔记详情API接口概述及JSON数据返回参考
Json_18179014480
APIjson大数据数据库大数据json
前言一、接口概述小红书笔记详情API接口是小红书开放平台提供的一项服务,允许开发者通过编程方式获取小红书上特定笔记的详细信息。该接口的核心功能包括:获取笔记内容:标题、正文、图片、视频等多媒体信息。用户互动数据:点赞数、评论数、收藏数、分享数等。作者信息:作者昵称、头像、粉丝数等。发布信息:发布时间、标签列表等。通过该接口,开发者可以构建内容分析工具、笔记推荐系统、数据爬虫等应用,帮助企业或个人进
- 从0到1构建智能招聘数据引擎:基于 Python 的 BOSS直聘信息采集实战与反爬破解指南
程序员威哥
python开发语言
前言在大数据浪潮席卷的时代,招聘平台蕴藏着海量的岗位信息,揭示着行业走向、人才趋势、薪资结构等核心价值。BOSS直聘作为国内极具代表性的直招平台,其数据对职业分析、市场监测甚至智能推荐系统的构建都有着重要意义。本文将手把手带你打造一个高质量、抗封锁的Python爬虫系统,精准采集BOSS直聘网的岗位数据,并全面解析其中涉及的反爬机制识别、加密参数处理、数据提取与存储等高级技巧,助你在Web数据采集
- iOS安全和逆向系列教程 第1篇: iOS逆向工程概述与学习路线图
自学不成才
iOS安全和逆向系列教程ios学习cocoa
iOS安全和逆向系列教程第1篇:iOS逆向工程概述与学习路线图欢迎各位加入我的iOS逆向工程专栏!在这个系列的第一篇文章中,我将为大家介绍iOS逆向工程的基本概念、应用场景以及完整的学习路线图,帮助大家建立清晰的学习框架。什么是iOS逆向工程?逆向工程(ReverseEngineering)是一种通过分析已有产品(如软件、硬件)来理解其设计、功能和工作原理的过程。在iOS领域,逆向工程特指通过各种
- 【SpringBoot从入门到精通】一、快速入门与核心概念
半夜偷你家裤衩子
SpringBootspringboot后端java
导读:作为SpringBoot系列的第一篇文章,本文将带你快速入门SpringBoot,了解其核心概念和基本原理,并通过一个实例演示如何创建你的第一个SpringBoot应用。一、SpringBoot是什么?SpringBoot是Spring团队推出的一个用于简化Spring应用开发的框架。它消除了传统Spring应用中繁琐的配置,提供了一种快速创建可独立运行、生产级别Spring应用的方式。Sp
- 《量化开发》系列 第 1 篇:金融知识基础入门指南(附 GitHub 学习项目)
Natsume1710
金融github学习
本文为《量化开发学习路线与知识点》专栏的第一篇参考项目:Awesome-QuantDev-Learn量化金融是金融经济学与计算机科学交叉融合形成的新兴行业,越来越多的技术人才正积极投身其中。然而,面对纷繁复杂的金融概念与专业的开发技能,许多人常常感到无从下手。本专栏将为C++/Python工程师、自学者、量化岗求职者提供系统清晰的学习路径。本篇文章聚焦于量化开发所需的金融基础知识,帮助技术人打下坚
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(