①左子树和右子树的高度之差的绝对值不超过1
②树中的每个节点的左子树和右子树都是AVL树
③每个节点都有一个平衡因子(但不是必须的,只是方便我们操作AVL树),每个节点的平衡因子的取值范围只可能是-1,0,1.
当在AVLTree中插入或者删除一个节点后会发现:破坏了AVL树的平衡,所以需要更新平衡因子以及需要进行某种旋转。
左右双旋:
右左双旋:
#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include <assert.h>
using namespace std;
template<class K,class V>
struct AVLTreeNode
{
AVLTreeNode()
{}
AVLTreeNode(const K& key, const V& value)
:_key(key)
, _value(value)
, _bf(0)
, _left(NULL)
, _right(NULL)
, _parent(NULL)
{}
int _bf;
K _key;
V _value;
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
};
template<class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
AVLTree()
:_root(NULL)
{}
bool Insert(const K& key, const V& value)
{
if (NULL == _root)
{
_root = new Node(key, value);
return true;
}
Node* cur = _root;
Node* parent = NULL;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}//cur=NULL
cur = new Node(key, value);
if (parent->_key < cur->_key)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
//更新平衡因子,调整树
//如果已经经过了旋转,则需要连接父节点
while (parent)//最多更新至根节点
{
if (cur == parent->_left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)//更新后为0--》说明原来为-1/1,高度没有增加
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1 )//说明原来是0--》高度增加
{
cur = parent;
parent = cur->_parent;
}
else // 2/-2---->需要旋转
{
//说明两个节点同号--->单旋转
int d = parent->_bf < 0 ? -1 : 1;
if (cur->_bf == d)
{
if (d == -1)
{
RotateR(parent);
}
else
{
RotateL(parent);
}
}
else
{
if (d == -1)//--->LR
{
RotateLR(parent);
}
else
{
RotateRL(parent);
}
}
break;//旋转的目的是降低树的高度,所以当旋转之后就不需向上更新
}
}
return true;
}
//左单旋转
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
Node* ppNode = parent->_parent;
parent->_parent = subR;
if (NULL == ppNode)
{
_root = subR;
_root->_parent = NULL;
}
else
{
if (parent == ppNode->_left)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
subR->_bf = parent->_bf = 0;//有疑问---》如何肯定平衡因子一定是0
}
//右单旋转
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
subL->_right = parent;
Node* ppNode = parent->_parent;//为了判断旋转轴是根节点还是二叉树中的一个节点
parent->_parent = subL;
if (NULL == ppNode)
{
_root = subL;
_root->_parent = NULL;
}
else
{
if (parent == ppNode->_left)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
subL->_bf = parent->_bf = 0;
}
//右左双旋
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
//先右单旋转
RotateR(parent->_right);
//后进行左单旋转
RotateL(parent);
//最后进行修改
if (bf == 0)
{
subR->_bf = parent->_bf = 0;
}
else if (bf == -1)
{
subR->_bf = 1;
parent->_bf = 0;
}
else if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
subRL->_bf = 0;
}
//左右双旋
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
//先进行左单旋转
RotateL(parent->_left);
//后进行右单旋转
RotateR(parent);
if (bf == 0)
{
parent->_bf = subL->_bf = 0;
}
else if (bf == -1)
{
subL->_bf = 0;
parent->_bf = 1;
}
else if (bf == 1)
{
subL->_bf = -1;
parent->_bf = 0;
}
subLR->_bf = 0;
}
bool IsBalance()
{
int depth;
return _IsBalance(_root,depth);
}
int Depth(Node* root)
{
if (NULL == root)
{
return 0;
}
int left = Depth(root->_left);
int right = Depth(root->_right);
return left > right ? left + 1 : right + 1;
}
void InOrder()
{
return _InOrder(_root);
cout << endl;
}
private:
void _InOrder(Node* root)
{
if (NULL == root)
{
return;
}
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
//时间复杂度为O(n^2)---》有许多重复次数(越是叶子节点就越是重复的次数多)
/*bool _IsBalance(Node* root)
{
if (NULL == root)
{
return true;
}
int left = Depth(root->_left);
int right = Depth(root->_right);
return abs(left - right) < 2
&& _IsBalance(root->_left)
&& _IsBalance(root->_right);
}*/
//时间复杂度为O(N),遍历一遍所有的节点(避免了重复次数)
bool _IsBalance(Node* root, int& depth)
{
if (NULL == root)
{
depth = 0;
return true;
}
int leftDepth, rightDepth;
if (_IsBalance(root->_left, leftDepth) == false)
{
return false;
}
if (_IsBalance(root->_right, rightDepth) == false)
{
return false;
}
if (rightDepth - leftDepth != root->_bf)
{
cout << "bf异常" << root->_bf << endl;
}
depth = leftDepth > rightDepth ? (leftDepth + 1) : (rightDepth + 1);
return true;
}
Node* _root;
};
测试代码:
#include"AVLTree1.h"
int main()
{
AVLTree<int, int> tree;
int arr[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); ++i)
{
tree.Insert(arr[i],1);
cout <[i]<< "isBalance?" << tree.IsBalance() << endl;
}
tree.InOrder();
return 0;
}
由于AVL树主要是用来进行搜索的,所以只实现了插入的代码,而删除只是进行了图解分析。。。