https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#visual-relationship-detection
https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#cascade-r-cnn
http://www.tongtianta.site/group?group_id=1
https://blog.csdn.net/u014380165/article/details/80784147
《An Analysis of Scale Invariance in Object Detection - SNIP》
arXiv:https://arxiv.org/abs/1711.08189
github:http://bit.ly/2yXVg4c
论文解读:https://blog.csdn.net/u014380165/article/details/80793334
《Cascade R-CNN: Delving into High Quality Object Detection》
arXiv:https://arxiv.org/abs/1712.00726s
github:https://github.com/zhaoweicai/cascade-rcnn
论文解读:https://blog.csdn.net/u014380165/article/details/80602027
《Single-Shot Refinement Neural Network for Object Detection》
arXiv:https://arxiv.org/abs/1712.00433
github:https://github.com/sfzhang15/RefineDet
论文解读:https://blog.csdn.net/u014380165/article/details/79502308
《W2F: A Weakly-Supervised to Fully-Supervised Framework for Object Detection》
paper:https://ivul.kaust.edu.sa/Documents/Publications/2018/W2F%20A%20Weakly-Supervised%20to%20Fully-Supervised%20Framework.pdf
《Single-Shot Object Detection with Enriched Semantics》
arXiv:https://arxiv.org/abs/1712.00433
论文解读:https://blog.csdn.net/u014380165/article/details/80602240
《Min-Entropy Latent Model for Weakly Supervised Object Detection》
《Optimizing Video Object Detection via a Scale-Time Lattice》
《Pseudo-Mask Augmented Object Detection》
《Dynamic Zoom-in Network for Fast Object Detection in Large Images》
《Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation》
《Domain Adaptive Faster R-CNN for Object Detection in the Wild》
《Scale-Transferrable Object Detection》
paper:http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/1376.pdf
论文解读:https://blog.csdn.net/u014380165/article/details/80602130
《Deep Reinforcement Learning of Region Proposal Networks for Object Detection》
《Multi-scale Location-aware Kernel Representation for Object Detection》
《Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships》
《Feature Selective Networks for Object Detection》
《Relation Networks for Object Detection》
arXiv:https://arxiv.org/abs/1711.11575
github:https://github.com/msracver/Relation-Networks-for-Object-Detection
《Mobile Video Object Detection with Temporally-Aware Feature Maps》
《DOTA: A Large-scale Dataset for Object Detection in Aerial Images》
《Towards Human-Machine Cooperation: Evolving Active Learning with Self-supervised Process for Object Detection》
《R-FCN-3000 at 30fps: Decoupling Detection and Classification》
arXiv:https://arxiv.org/abs/1712.01802
论文解读:https://blog.csdn.net/u014380165/article/details/78809002
《Zigzag Learning for Weakly Supervised Object Detection》
arXiv:https://arxiv.org/abs/1804.09466
目录
· R-CNN
· Fast R-CNN
· Faster R-CNN
· Light-Head R-CNN
· Cascade R-CNN
· SPP-Net
· YOLO
· YOLOv2
· YOLOv3
· SSD
· DSSD
· FSSD
· ESSD
· Pelee
· R-FCN
· FPN
· RetinaNet
· MegDet
· DetNet
· ZSD
R-CNN
Rich feature hierarchies for accurate object detection and semantic segmentation
· intro: R-CNN
· arxiv: http://arxiv.org/abs/1311.2524
· supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
· slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
· slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
· github: https://github.com/rbgirshick/rcnn
· notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
· caffe-pr(“Make R-CNN the Caffe detection example”): https://github.com/BVLC/caffe/pull/482
Fast R-CNN
Fast R-CNN
· arxiv: http://arxiv.org/abs/1504.08083
· slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
· github: https://github.com/rbgirshick/fast-rcnn
· github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco
· webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
· notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
· notes: http://blog.csdn.net/linj_m/article/details/48930179
· github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
· github: https://github.com/mahyarnajibi/fast-rcnn-torch
· github: https://github.com/apple2373/chainer-simple-fast-rnn
· github: https://github.com/zplizzi/tensorflow-fast-rcnn
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
· intro: CVPR 2017
· arxiv: https://arxiv.org/abs/1704.03414
· paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf
· github(Caffe): https://github.com/xiaolonw/adversarial-frcnn
Faster R-CNN
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
· intro: NIPS 2015
· arxiv: http://arxiv.org/abs/1506.01497
· gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
· slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
· github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
· github(Caffe): https://github.com/rbgirshick/py-faster-rcnn
· github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/faster_rcnn
· github(PyTorch–recommend): https://github.com//jwyang/faster-rcnn.pytorch
· github: https://github.com/mitmul/chainer-faster-rcnn
· github(PyTorch):: https://github.com/andreaskoepf/faster-rcnn.torch
· github(PyTorch):: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
· github(TensorFlow): https://github.com/smallcorgi/Faster-RCNN_TF
· github(TensorFlow): https://github.com/CharlesShang/TFFRCNN
· github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
· github(Keras): https://github.com/yhenon/keras-frcnn
· github: https://github.com/Eniac-Xie/faster-rcnn-resnet
· github(C++): https://github.com/D-X-Y/caffe-faster-rcnn/tree/dev
R-CNN minus R
· intro: BMVC 2015
· arxiv: http://arxiv.org/abs/1506.06981
基于MXNet,Faster R-CNN的数据并行化的分布式实现
· github: https://github.com/dmlc/mxnet/tree/master/example/rcnn
Contextual Priming and Feedback for Faster R-CNN
· intro: ECCV 2016. Carnegie Mellon University
· paper: http://abhinavsh.info/context_priming_feedback.pdf
· poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf
关于Region Sampling的Faster RCNN实现
· intro: Technical Report, 3 pages. CMU
· arxiv: https://arxiv.org/abs/1702.02138
· github: https://github.com/endernewton/tf-faster-rcnn
可解释(Interpretable)R-CNN
· intro: North Carolina State University & Alibaba
· keywords: AND-OR Graph (AOG)
· arxiv: https://arxiv.org/abs/1711.05226
Light-Head R-CNN
Light-Head R-CNN: In Defense of Two-Stage Object Detector
· intro: Tsinghua University & Megvii Inc
· arxiv: https://arxiv.org/abs/1711.07264
· github(offical): https://github.com/zengarden/light_head_rcnn
· github: https://github.com/terrychenism/Deformable-ConvNets/blob/master/rfcn/symbols/resnet_v1_101_rfcn_light.py#L784
Cascade R-CNN
Cascade R-CNN: Delving into High Quality Object Detection
· arxiv: https://arxiv.org/abs/1712.00726
· github: https://github.com/zhaoweicai/cascade-rcnn
SPP-Net
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
· intro: ECCV 2014 / TPAMI 2015
· arxiv: http://arxiv.org/abs/1406.4729
· github: https://github.com/ShaoqingRen/SPP_net
· notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
· intro: PAMI 2016
· intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
· project page: http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html
· arxiv: http://arxiv.org/abs/1412.5661
Object Detectors Emerge in Deep Scene CNNs
· intro: ICLR 2015
· arxiv: http://arxiv.org/abs/1412.6856
· paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
· paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
· slides: http://places.csail.mit.edu/slide_iclr2015.pdf
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
· intro: CVPR 2015
· project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html
· arxiv: https://arxiv.org/abs/1502.04275
· github: https://github.com/YknZhu/segDeepM
Object Detection Networks on Convolutional Feature Maps
· intro: TPAMI 2015
· keywords: NoC
· arxiv: http://arxiv.org/abs/1504.06066
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
· arxiv: http://arxiv.org/abs/1504.03293
· slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
· github: https://github.com/YutingZhang/fgs-obj
DeepBox: Learning Objectness with Convolutional Networks
· keywords: DeepBox
· arxiv: http://arxiv.org/abs/1505.02146
· github: https://github.com/weichengkuo/DeepBox
YOLO
You Only Look Once: Unified, Real-Time Object Detection
· arxiv: http://arxiv.org/abs/1506.02640
· code: https://pjreddie.com/darknet/yolov1/
· github: https://github.com/pjreddie/darknet
· blog: https://pjreddie.com/darknet/yolov1/
· slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p
· reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
· github: https://github.com/gliese581gg/YOLO_tensorflow
· github: https://github.com/xingwangsfu/caffe-yolo
· github: https://github.com/frankzhangrui/Darknet-Yolo
· github: https://github.com/BriSkyHekun/py-darknet-yolo
· github: https://github.com/tommy-qichang/yolo.torch
· github: https://github.com/frischzenger/yolo-windows
· github: https://github.com/AlexeyAB/yolo-windows
· github: https://github.com/nilboy/tensorflow-yolo
darkflow - translate darknet to tensorflow. 加载轻量级的模型,并基于Tensorflow对权重进行fine-tune,最终输出C++的constant graph。
· blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp
· github: https://github.com/thtrieu/darkflow
基于自己的数据Training YOLO
· intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
· blog: http://guanghan.info/blog/en/my-works/train-yolo/
· github: https://github.com/Guanghan/darknet
YOLO: Core ML versus MPSNNGraph
· intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
· blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/
· github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph
TensorFlow YOLO object detection on Android
· intro: Real-time object detection on Android using the YOLO network with TensorFlow
· github: https://github.com/natanielruiz/android-yolo
Computer Vision in iOS – Object Detection
· blog: https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/
· github:https://github.com/r4ghu/iOS-CoreML-Yolo
YOLOv2
YOLO9000: 更好,更快,更强
· arxiv: https://arxiv.org/abs/1612.08242
· code: http://pjreddie.com/yolo9000/ https://pjreddie.com/darknet/yolov2/
· github(Chainer): https://github.com/leetenki/YOLOv2
· github(Keras): https://github.com/allanzelener/YAD2K
· github(PyTorch): https://github.com/longcw/yolo2-pytorch
· github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
· github(Windows): https://github.com/AlexeyAB/darknet
· github: https://github.com/choasUp/caffe-yolo9000
· github: https://github.com/philipperemy/yolo-9000
darknet_scripts
· intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors?
· github: https://github.com/Jumabek/darknet_scripts
Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2
· github: https://github.com/AlexeyAB/Yolo_mark
LightNet: Bringing pjreddie’s DarkNet out of the shadows
https://github.com//explosion/lightnet
YOLO v2 Bounding Box Tool
· intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires.
· github: https://github.com/Cartucho/yolo-boundingbox-labeler-GUI
Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors
· arxiv: https://arxiv.org/abs/1804.04606
Object detection at 200 Frames Per Second
· intro: faster than Tiny-Yolo-v2
· arXiv: https://arxiv.org/abs/1805.06361
YOLOv3
YOLOv3: An Incremental Improvement
· arxiv:https://arxiv.org/abs/1804.02767
· paper:https://pjreddie.com/media/files/papers/YOLOv3.pdf
· code: https://pjreddie.com/darknet/yolo/
· github(Official):https://github.com/pjreddie/darknet
· github:https://github.com/experiencor/keras-yolo3
· github:https://github.com/qqwweee/keras-yolo3
· github:https://github.com/marvis/pytorch-yolo3
· github:https://github.com/ayooshkathuria/pytorch-yolo-v3
· github:https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch
SSD
SSD: Single Shot MultiBox Detector
· intro: ECCV 2016 Oral
· arxiv: http://arxiv.org/abs/1512.02325
· paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
· slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf
· github(Official): https://github.com/weiliu89/caffe/tree/ssd
· video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
· github: https://github.com/zhreshold/mxnet-ssd
· github: https://github.com/zhreshold/mxnet-ssd.cpp
· github: https://github.com/rykov8/ssd_keras
· github: https://github.com/balancap/SSD-Tensorflow
· github: https://github.com/amdegroot/ssd.pytorch
· github(Caffe): https://github.com/chuanqi305/MobileNet-SSD
What’s the diffience in performance between this new code you pushed and the previous code? #327
https://github.com/weiliu89/caffe/issues/327
DSSD
DSSD : Deconvolutional Single Shot Detector
· intro: UNC Chapel Hill & Amazon Inc
· arxiv: https://arxiv.org/abs/1701.06659
· github: https://github.com/chengyangfu/caffe/tree/dssd
· github: https://github.com/MTCloudVision/mxnet-dssd
· demo: http://120.52.72.53/http://www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4
Enhancement of SSD by concatenating feature maps for object detection
· intro: rainbow SSD (R-SSD)
· arxiv: https://arxiv.org/abs/1705.09587
Context-aware Single-Shot Detector
· keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
· arxiv: https://arxiv.org/abs/1707.08682
Feature-Fused SSD: Fast Detection for Small Objects
https://arxiv.org/abs/1709.05054
FSSD
FSSD: Feature Fusion Single Shot Multibox Detector
https://arxiv.org/abs/1712.00960
Weaving Multi-scale Context for Single Shot Detector
· intro: WeaveNet
· keywords: fuse multi-scale information
· arxiv: https://arxiv.org/abs/1712.03149
ESSD
Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network
https://arxiv.org/abs/1801.05918
Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection
https://arxiv.org/abs/1802.06488
Pelee
Pelee: A Real-Time Object Detection System on Mobile Devices
https://github.com/Robert-JunWang/Pelee
intro: (ICLR 2018 workshop track)
arxiv: https://arxiv.org/abs/1804.06882
github: https://github.com/Robert-JunWang/Pelee
R-FCN
R-FCN: Object Detection via Region-based Fully Convolutional Networks
· arxiv: http://arxiv.org/abs/1605.06409
· github: https://github.com/daijifeng001/R-FCN
· github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/rfcn
· github: https://github.com/Orpine/py-R-FCN
· github: https://github.com/PureDiors/pytorch_RFCN
· github: https://github.com/bharatsingh430/py-R-FCN-multiGPU
· github: https://github.com/xdever/RFCN-tensorflow
R-FCN-3000 at 30fps: Decoupling Detection and Classification
https://arxiv.org/abs/1712.01802
Recycle deep features for better object detection
· arxiv: http://arxiv.org/abs/1607.05066
FPN
Feature Pyramid Networks for Object Detection
· intro: Facebook AI Research
· arxiv: https://arxiv.org/abs/1612.03144
Action-Driven Object Detection with Top-Down Visual Attentions
· arxiv: https://arxiv.org/abs/1612.06704
Beyond Skip Connections: Top-Down Modulation for Object Detection
· intro: CMU & UC Berkeley & Google Research
· arxiv: https://arxiv.org/abs/1612.06851
Wide-Residual-Inception Networks for Real-time Object Detection
· intro: Inha University
· arxiv: https://arxiv.org/abs/1702.01243
Attentional Network for Visual Object Detection
· intro: University of Maryland & Mitsubishi Electric Research Laboratories
· arxiv: https://arxiv.org/abs/1702.01478
Learning Chained Deep Features and Classifiers for Cascade in Object Detection
· keykwords: CC-Net
· intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
· arxiv: https://arxiv.org/abs/1702.07054
DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling
· intro: ICCV 2017 (poster)
· arxiv: https://arxiv.org/abs/1703.10295
Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries
· intro: CVPR 2017
· arxiv: https://arxiv.org/abs/1704.03944
Spatial Memory for Context Reasoning in Object Detection
· arxiv: https://arxiv.org/abs/1704.04224
Accurate Single Stage Detector Using Recurrent Rolling Convolution
· intro: CVPR 2017. SenseTime
· keywords: Recurrent Rolling Convolution (RRC)
· arxiv: https://arxiv.org/abs/1704.05776
· github: https://github.com/xiaohaoChen/rrc_detection
Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection
https://arxiv.org/abs/1704.05775
LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
· intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
· arxiv: https://arxiv.org/abs/1705.05922
Point Linking Network for Object Detection
· intro: Point Linking Network (PLN)
· arxiv: https://arxiv.org/abs/1706.03646
Perceptual Generative Adversarial Networks for Small Object Detection
https://arxiv.org/abs/1706.05274
Few-shot Object Detection
https://arxiv.org/abs/1706.08249
Yes-Net: An effective Detector Based on Global Information
https://arxiv.org/abs/1706.09180
SMC Faster R-CNN: Toward a scene-specialized multi-object detector
https://arxiv.org/abs/1706.10217
Towards lightweight convolutional neural networks for object detection
https://arxiv.org/abs/1707.01395
RON: Reverse Connection with Objectness Prior Networks for Object Detection
· intro: CVPR 2017
· arxiv: https://arxiv.org/abs/1707.01691
· github: https://github.com/taokong/RON
Mimicking Very Efficient Network for Object Detection
· intro: CVPR 2017. SenseTime & Beihang University
· paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf
Residual Features and Unified Prediction Network for Single Stage Detection
https://arxiv.org/abs/1707.05031
Deformable Part-based Fully Convolutional Network for Object Detection
· intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
· arxiv: https://arxiv.org/abs/1707.06175
Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors
· intro: ICCV 2017
· arxiv: https://arxiv.org/abs/1707.06399
Recurrent Scale Approximation for Object Detection in CNN
· intro: ICCV 2017
· keywords: Recurrent Scale Approximation (RSA)
· arxiv: https://arxiv.org/abs/1707.09531
· github: https://github.com/sciencefans/RSA-for-object-detection
DSOD
DSOD: Learning Deeply Supervised Object Detectors from Scratch
· intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
· arxiv: https://arxiv.org/abs/1708.01241
· github: https://github.com/szq0214/DSOD
· github:https://github.com/Windaway/DSOD-Tensorflow
· github:https://github.com/chenyuntc/dsod.pytorch
Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids
· arxiv:https://arxiv.org/abs/1712.00886
· github:https://github.com/szq0214/GRP-DSOD
RetinaNet
Focal Loss for Dense Object Detection
· intro: ICCV 2017 Best student paper award. Facebook AI Research
· keywords: RetinaNet
· arxiv: https://arxiv.org/abs/1708.02002
CoupleNet: Coupling Global Structure with Local Parts for Object Detection
· intro: ICCV 2017
· arxiv: https://arxiv.org/abs/1708.02863
Incremental Learning of Object Detectors without Catastrophic Forgetting
· intro: ICCV 2017. Inria
· arxiv: https://arxiv.org/abs/1708.06977
Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection
https://arxiv.org/abs/1709.04347
StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection
https://arxiv.org/abs/1709.05788
Dynamic Zoom-in Network for Fast Object Detection in Large Images
https://arxiv.org/abs/1711.05187
Zero-Annotation Object Detection with Web Knowledge Transfer
· intro: NTU, Singapore & Amazon
· keywords: multi-instance multi-label domain adaption learning framework
· arxiv: https://arxiv.org/abs/1711.05954
MegDet
MegDet: A Large Mini-Batch Object Detector
· arxiv: https://arxiv.org/abs/1711.07240
Single-Shot Refinement Neural Network for Object Detection
· arxiv: https://arxiv.org/abs/1711.06897
· github: https://github.com/sfzhang15/RefineDet
Receptive Field Block Net for Accurate and Fast Object Detection
· arxiv: https://arxiv.org/abs/1711.07767
· github: https://github.com//ruinmessi/RFBNet
An Analysis of Scale Invariance in Object Detection - SNIP
· arxiv: https://arxiv.org/abs/1711.08189
· github: https://github.com/bharatsingh430/snip
Feature Selective Networks for Object Detection
https://arxiv.org/abs/1711.08879
Learning a Rotation Invariant Detector with Rotatable Bounding Box
· arxiv: https://arxiv.org/abs/1711.09405
· github: https://github.com/liulei01/DRBox
Scalable Object Detection for Stylized Objects
· intro: Microsoft AI & Research Munich
· arxiv: https://arxiv.org/abs/1711.09822
Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids
· arxiv: https://arxiv.org/abs/1712.00886
· github: https://github.com/szq0214/GRP-DSOD
Deep Regionlets for Object Detection
· keywords: region selection network, gating network
· arxiv: https://arxiv.org/abs/1712.02408
Training and Testing Object Detectors with Virtual Images
· intro: IEEE/CAA Journal of Automatica Sinica
· arxiv: https://arxiv.org/abs/1712.08470
Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video
· keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
· arxiv: https://arxiv.org/abs/1712.08832
Spot the Difference by Object Detection
· intro: Tsinghua University & JD Group
· arxiv: https://arxiv.org/abs/1801.01051
Localization-Aware Active Learning for Object Detection
· arxiv: https://arxiv.org/abs/1801.05124
Object Detection with Mask-based Feature Encoding
https://arxiv.org/abs/1802.03934
LSTD: A Low-Shot Transfer Detector for Object Detection
· intro: AAAI 2018
· arxiv: https://arxiv.org/abs/1803.01529
Domain Adaptive Faster R-CNN for Object Detection in the Wild
· intro: CVPR 2018. ETH Zurich & ESAT/PSI
· arxiv: https://arxiv.org/abs/1803.03243
Pseudo Mask Augmented Object Detection
https://arxiv.org/abs/1803.05858
Revisiting RCNN: On Awakening the Classification Power of Faster RCNN
https://arxiv.org/abs/1803.06799
Zero-Shot Detection
· intro: Australian National University
· keywords: YOLO
· arxiv: https://arxiv.org/abs/1803.07113
Learning Region Features for Object Detection
· intro: Peking University & MSRA
· arxiv: https://arxiv.org/abs/1803.07066
Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection
· intro: Singapore Management University & Zhejiang University
· arxiv: https://arxiv.org/abs/1803.08208
Object Detection for Comics using Manga109 Annotations
· intro: University of Tokyo & National Institute of Informatics, Japan
· arxiv: https://arxiv.org/abs/1803.08670
Task-Driven Super Resolution: Object Detection in Low-resolution Images
https://arxiv.org/abs/1803.11316
Transferring Common-Sense Knowledge for Object Detection
https://arxiv.org/abs/1804.01077
Multi-scale Location-aware Kernel Representation for Object Detection
· intro: CVPR 2018
· arxiv: https://arxiv.org/abs/1804.00428
· github: https://github.com/Hwang64/MLKP
Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors
· intro: National University of Defense Technology
· arxiv: https://arxiv.org/abs/1804.04606
Robust Physical Adversarial Attack on Faster R-CNN Object Detector
https://arxiv.org/abs/1804.05810
DetNet
DetNet: A Backbone network for Object Detection
arxiv: https://arxiv.org/abs/1804.06215
LMNet: Real-time Multiclass Object Detection on CPU using 3D LiDARs
· arxiv: https://arxiv.org/abs/1805.04902
· github: https://github.com/CPFL/Autoware/tree/feature/cnn_lidar_detection
ZSD
Zero-Shot Object Detection
· arxiv: https://arxiv.org/abs/1804.04340
Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts
· arxiv: https://arxiv.org/abs/1803.06049
Zero-Shot Object Detection by Hybrid Region Embedding
· arxiv: https://arxiv.org/abs/1805.06157