Tensorflow Deep MNIST: Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]


Tensorflow Deep MNIST: Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]





原创

2017年07月04日 16:51:42

        


  • Deep Learning /
  • tensorflow /
  • oom /



    • 4283


    • 编辑



    • 删除




    今天测试卷积神经网络报了如题所示的错误,我跑的代码如下。

    [python] view plain copy
    print ?
    1. from tensorflow.examples.tutorials.mnist import input_data  
    2. mnist = input_data.read_data_sets(’MNIST_data’, one_hot=True)  
    3.   
    4. import tensorflow as tf  
    5. sess = tf.InteractiveSession()  
    6.   
    7. x = tf.placeholder(tf.float32, shape=[None784])  
    8. y_ = tf.placeholder(tf.float32, shape=[None10])  
    9.   
    10. W = tf.Variable(tf.zeros([784,10]))  
    11. b = tf.Variable(tf.zeros([10]))  
    12.   
    13. y = tf.nn.softmax(tf.matmul(x,W) + b)  
    14.   
    15. def weight_variable(shape):  
    16.   initial = tf.truncated_normal(shape, stddev=0.1)  
    17.   return tf.Variable(initial)  
    18.   
    19. def bias_variable(shape):  
    20.   initial = tf.constant(0.1, shape=shape)  
    21.   return tf.Variable(initial)  
    22.   
    23.   
    24. def conv2d(x, W):  
    25.   return tf.nn.conv2d(x, W, strides=[1111], padding=‘SAME’)  
    26.   
    27. def max_pool_2x2(x):  
    28.   return tf.nn.max_pool(x, ksize=[1221],  
    29.                         strides=[1221], padding=‘SAME’)  
    30.   
    31.   
    32. W_conv1 = weight_variable([55132])  
    33. b_conv1 = bias_variable([32])  
    34.   
    35.   
    36. x_image = tf.reshape(x, [-1,28,28,1])  
    37.   
    38. h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  
    39. h_pool1 = max_pool_2x2(h_conv1)  
    40.   
    41. W_conv2 = weight_variable([553264])  
    42. b_conv2 = bias_variable([64])  
    43.   
    44. h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)  
    45. h_pool2 = max_pool_2x2(h_conv2)  
    46.   
    47. W_fc1 = weight_variable([7 * 7 * 641024])  
    48. b_fc1 = bias_variable([1024])  
    49.   
    50. h_pool2_flat = tf.reshape(h_pool2, [-17*7*64])  
    51. h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  
    52.   
    53. keep_prob = tf.placeholder(tf.float32)  
    54. h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  
    55.   
    56. W_fc2 = weight_variable([102410])  
    57. b_fc2 = bias_variable([10])  
    58.   
    59. y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  
    60.   
    61. cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))  
    62. train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)  
    63. correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))  
    64. accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  
    65.   
    66. init = tf.initialize_all_variables()  
    67. config = tf.ConfigProto()  
    68. config.gpu_options.allocator_type = ’BFC’  
    69. with tf.Session(config = config) as s:  
    70.   sess.run(init)  
    71.   
    72. for i in range(20000):  
    73.   batch = mnist.train.next_batch(50)  
    74.   if i%100 == 0:  
    75.     train_accuracy = accuracy.eval(feed_dict={  
    76.         x:batch[0], y_: batch[1], keep_prob: 1.0})  
    77.     print(“step %d, training accuracy %g”%(i, train_accuracy))  
    78.   train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})  
    79.   
    80. print(“test accuracy %g”%accuracy.eval(feed_dict={  
    81.     x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))  
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    import tensorflow as tf
    sess = tf.InteractiveSession()
    
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder(tf.float32, shape=[None, 10])
    
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    
    y = tf.nn.softmax(tf.matmul(x,W) + b)
    
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
    
    
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')
    
    
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    
    
    x_image = tf.reshape(x, [-1,28,28,1])
    
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    init = tf.initialize_all_variables()
    config = tf.ConfigProto()
    config.gpu_options.allocator_type = 'BFC'
    with tf.Session(config = config) as s:
      sess.run(init)
    
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
    print("test accuracy %g"%accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))


    然后错误大致如下


    [python] view plain copy
    print ?
    1. W tensorflow/core/common_runtime/bfc_allocator.cc:270] **********************************************************xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  
    2. W tensorflow/core/common_runtime/bfc_allocator.cc:271] Ran out of memory trying to allocate 957.03MiB.  See logs for memory state.  
    3. W tensorflow/core/framework/op_kernel.cc:968] Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]  
    4. Traceback (most recent call last):  
    5.   File ”trainer_deepMnist.py”, line 109in   
    6.     x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))  
    7.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py”, line 559in eval  
    8.     return _eval_using_default_session(self, feed_dict, self.graph, session)  
    9.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py”, line 3648in _eval_using_default_session  
    10.     return session.run(tensors, feed_dict)  
    11.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py”, line 710in run  
    12.     run_metadata_ptr)  
    13.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py”, line 908in _run  
    14.     feed_dict_string, options, run_metadata)  
    15.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py”, line 958in _do_run  
    16.     target_list, options, run_metadata)  
    17.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py”, line 978in _do_call  
    18.     raise type(e)(node_def, op, message)  
    19. tensorflow.python.framework.errors.ResourceExhaustedError: OOM when allocating tensor with shape[10000,32,28,28]  
    20.      [[Node: Conv2D = Conv2D[T=DT_FLOAT, data_format=”NHWC”, padding=“SAME”, strides=[1111], use_cudnn_on_gpu=true, _device=“/job:localhost/replica:0/task:0/gpu:0”](Reshape, Variable_2/read)]]  
    21. Caused by op u’Conv2D’, defined at:  
    22.   File ”trainer_deepMnist.py”, line 61in   
    23.     h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  
    24.   File ”trainer_deepMnist.py”, line 46in conv2d  
    25.     return tf.nn.conv2d(x, W, strides=[1111], padding=‘SAME’)  
    26.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py”, line 394in conv2d  
    27.     data_format=data_format, name=name)  
    28.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py”, line 703in apply_op  
    29.     op_def=op_def)  
    30.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py”, line 2320in create_op  
    31.     original_op=self._default_original_op, op_def=op_def)  
    32.   File ”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py”, line 1239in __init__  
    33.     self._traceback = _extract_stack()  
    W tensorflow/core/common_runtime/bfc_allocator.cc:270] **********************************************************xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    W tensorflow/core/common_runtime/bfc_allocator.cc:271] Ran out of memory trying to allocate 957.03MiB.  See logs for memory state.
    W tensorflow/core/framework/op_kernel.cc:968] Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]
    Traceback (most recent call last):
      File "trainer_deepMnist.py", line 109, in 
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 559, in eval
        return _eval_using_default_session(self, feed_dict, self.graph, session)
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3648, in _eval_using_default_session
        return session.run(tensors, feed_dict)
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 710, in run
        run_metadata_ptr)
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 908, in _run
        feed_dict_string, options, run_metadata)
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 958, in _do_run
        target_list, options, run_metadata)
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 978, in _do_call
        raise type(e)(node_def, op, message)
    tensorflow.python.framework.errors.ResourceExhaustedError: OOM when allocating tensor with shape[10000,32,28,28]
         [[Node: Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/gpu:0"](Reshape, Variable_2/read)]]
    Caused by op u'Conv2D', defined at:
      File "trainer_deepMnist.py", line 61, in 
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
      File "trainer_deepMnist.py", line 46, in conv2d
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 394, in conv2d
        data_format=data_format, name=name)
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op
        op_def=op_def)
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2320, in create_op
        original_op=self._default_original_op, op_def=op_def)
      File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1239, in __init__
        self._traceback = _extract_stack()

    原因是GPU OOM,没法分配那么多显存来搞定accuracy evaluation,因此需要改成批处理。

    TensorFlow给出的原因解释:

    Here is how I solved this problem: the error means that the GPU runs out of memory during accuracy evaluation. Hence it needs a smaller sized dataset, which can be achieved by using data in batches. So, instead of running the code on the whole test dataset it needs to be run in batches.

    解决方案:把最后那句print换成我这的三行,分批print,就没问题了。

    [python] view plain copy
    print ?
    1. for i in xrange(10):  
    2.     testSet = mnist.test.next_batch(50)  
    3.     print(“test accuracy %g”%accuracy.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0}))  
    for i in xrange(10):          若报错 可将xrange改为range
        testSet = mnist.test.next_batch(50)
        print("test accuracy %g"%accuracy.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0}))


    tensorflow搬运工:

    https://stackoverflow.com/questions/39076388/tensorflow-deep-mnist-resource-exhausted-oom-when-alloc



                

    你可能感兴趣的:(Tensorflow)