Focal Loss 分类问题 pytorch实现代码(简单实现)

ps:由于降阳性这步正负样本数量在差距巨大.正样本1500多个,而负样本750000多个.要用 Focal Loss来解决这个问题.

首先感谢Code_Mart的博客把理论汇总了下https://blog.csdn.net/Code_Mart/article/details/89736187.并实现了Focal Loss的二分类和多分类的代码并讲解.同时他与xwmwanjy666的讨论更讲清楚了一些细节问题.

但是我感觉代码不符合pytorch0.4.1版本,而在他们俩的对话里发现了https://github.com/ronghuaiyang/arcface-pytorch/blob/master/models/focal_loss.py我按思路稍微改了下.

import torch
import torch.nn as nn


class FocalLoss(nn.Module):

    def __init__(self, gamma=0,alpha=1):
        super(FocalLoss, self).__init__()
        self.gamma = gamma
        self.ce = nn.CrossEntropyLoss()
        self.alpha=alpha
    def forward(self, input, target):
        logp = self.ce(input, target)
        p = torch.exp(-logp)
        loss = (1 - p) ** self.gamma * logp
        loss = self.alpha*loss
        return loss.mean()

这么简单这才是我想要的么,但是后来继续看他们的讨论对照一下也发现了没有做当(ground truth为1,alpha=a;当ground truth为0,alpha=1-a).搞得我很难受,然后我花了4个多小时在github上搜索,发现基本要么没考虑这个问题,要么代码很复杂(看不太懂,输入也不太符合我的要求)同时不是应用在分类问题上,而且用的函数pytorch版本一般都是0.4以下.

直到我发现了https://github.com/louis-she/focal-loss.pytorch/blob/master/focal_loss.py

import torch
import torch.nn.functional as F


class BCEFocalLoss(torch.nn.Module):

    def __init__(self, gamma=2, alpha=None, reduction='elementwise_mean'):
        super().__init__()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = reduction

    def forward(self, _input, target):
        pt = torch.sigmoid(_input)
        loss = - (1 - pt) ** self.gamma * target * torch.log(pt) - \
            pt ** self.gamma * (1 - target) * torch.log(1 - pt)
        if self.alpha:
            loss = loss * self.alpha
        if self.reduction == 'elementwise_mean':
            loss = torch.mean(loss)
        elif self.reduction == 'sum':
            loss = torch.sum(loss)
        return loss

loss = - (1 - pt) ** self.gamma * target * torch.log(pt) -pt ** self.gamma * (1 - target) * torch.log(1 - pt).这也可以解决上面的问题.我不太理解作者没有改相应(ground truth为1,alpha=a;当ground truth为0,alpha=1-a).但是借鉴了这个思路将第一份代码改成如下:

import torch
import torch.nn as nn


class FocalLoss(nn.Module):

    def __init__(self, gamma=2,alpha=0.25):
        super(FocalLoss, self).__init__()
        self.gamma = gamma
        self.ce = nn.CrossEntropyLoss()
        self.alpha=alpha
    def forward(self, input, target):
        logp = self.ce(input, target)
        p = torch.exp(-logp)
        loss = self.alpha*(1 - p) ** self.gamma * logp * target.long() + \
               (1-self.alpha)*(p) ** self.gamma * logp * (1-target.long())
        return loss.mean()

也不知道这样写有没有问题.

ps添加:2019年6月14日:

用Focal Loss 分类问题 pytorch实现代码续3的测试代码测试借鉴了这个思路将第一份代码改的代码(上面最后的代码)

中间结果是上面的loss:

input=torch.Tensor([[ 0.0543,  0.5641],[ 1.2221, -0.5496],[-0.7951, -0.1546],[-0.4557,  1.4724]])
target= torch.Tensor([1,0,1,1])

tensor([[0.3752, 0.6248],
        [0.8547, 0.1453],
        [0.3451, 0.6549],
        [0.1270, 0.8730]])
tensor(0.0080)
tensor(0.0344)
tensor(0.2966)



target= torch.Tensor([0,1,0,0])

tensor([[0.3752, 0.6248],
        [0.8547, 0.1453],
        [0.3451, 0.6549],
        [0.1270, 0.8730]])
tensor(0.5403)
tensor(0.0987)
tensor(1.5092)

从上面的结果看出效果不好第一个标签是对应预测概率,故loss该很小,第二个标签与预测概率相反,故loss该很大.虽然趋势一致.但是相对倍数大概分别是70倍,3倍,5倍.那还不如用自带的损失函数呢.故最后选用用Focal Loss 分类问题 pytorch实现代码续3中的结论代码:

import torch
import torch.nn as nn
 
#二分类
class FocalLoss(nn.Module):
 
    def __init__(self, gamma=2,alpha=0.25):
        super(FocalLoss, self).__init__()
        self.gamma = gamma
        self.alpha=alpha
    def forward(self, input, target):
        # input:size is M*2. M is the batch number
        # target:size is M.
        pt=torch.softmax(input,dim=1)
        p=pt[:,1]
        loss = -self.alpha*(1-p)**self.gamma*(target*torch.log(p))-\
               (1-self.alpha)*p**self.gamma*((1-target)*torch.log(1-p))
        return loss.mean()

 

你可能感兴趣的:(深度学习)