CyclicBarrier源码浅析

本文所使用的源码版本是JDK1.7

CyclicBarrier是什么?

JDK1.7中的介绍如下:

  • A synchronization aid that allows a set of threads to all wait for
    • each other to reach a common barrier point. CyclicBarriers are
    • useful in programs involving a fixed sized party of threads that
    • must occasionally wait for each other. The barrier is called
    • cyclic because it can be re-used after the waiting threads
    • are released.

CyclicBarrier它允许一组线程等待,等待的时间就是执行了await()以后,相当于在await()处建立了一个Barrier,当Barrier被打破(broken),线程才会继续运行await方法后面的程序。而该Barrier在broken后可以重用,所以称它为循环的屏障点。CyclicBarrier支持一个可选的Runnable命令,在一组线程中的最后一个线程到达屏障点之后(Barrier被broken),该命令会被最后一个到达Barrier前的一个线程所执行。


CyclicBarrier的例子

这里我使用了F1赛车的发车的例子。

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.TimeUnit;

public class F1 {

    public static class Car implements Runnable {
        private int carId;
        private final CyclicBarrier barrier;

        public Car(int carId, CyclicBarrier barrier) {
            this.barrier = barrier;
            this.carId = carId;
        }

        @Override
        public void run() {
            try {
                System.out.println(carId+"号车准备发车");
                TimeUnit.MILLISECONDS.sleep(2000);
                barrier.await();//所有的都在這裡阻塞,直到控制信號完成
            } catch (InterruptedException | BrokenBarrierException e) {
                e.printStackTrace();
            }
            System.out.println(carId+"号车起步了");
        }
    }
    public static class Controll implements Runnable{

        @Override
        public void run() {
            System.out.println("所有车都准备好了,信号灯倒计时");
            for(int i=3;i>=0;i--){
                try {
                    TimeUnit.SECONDS.sleep(1);
                    System.out.println((i==0? "发车":i));
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
            System.out.println("执行完控制台的controller的run()以后,唤醒之前阻塞的方法!");
        }
    }
    public static void main(String[] args) throws InterruptedException {
        CyclicBarrier barrier = new CyclicBarrier(22, new Controll());
        System.out.println("马来西亚大奖赛正赛开始了");
        TimeUnit.SECONDS.sleep(3);
        for(int i =1;i<23;i++){
            new Thread(new Car(i, barrier)).start();;
        }
    }
}
/*
马来西亚大奖赛正赛开始了
1号车准备发车
2号车准备发车
3号车准备发车
4号车准备发车
......
22号车准备发车
所有车都准备好了,信号灯倒计时
3
2
1
发车
执行完控制台的controller的run()以后,唤醒之前阻塞的方法!
5号车起步了
4号车起步了
2号车起步了
......
22号车起步了
1号车起步了

*/

可以知道,所有的赛车(线程)在执行完await()以后开始在Barrier前面等待,当所有的线程都到达了Barrier前以后,会执行Runnable类的Commond(这里就是信号灯),当Commond执行完run()以后,会打破Barrier,使得等待着的线程继续执行剩下的任务。

CyclicBarrier源码

首先我们先来看一下CyclicBarrier里面有什么

public class CyclicBarrier {

    /**内部域broken用来表示当前的屏障是否被打破了*/
    private static class Generation {
        boolean broken = false;
    }
    /** lock用于保护屏障入口的锁 */
    private final ReentrantLock lock = new ReentrantLock();
    /** 用来唤醒阻塞的线程的条件 */
    private final Condition trip = lock.newCondition();
    /** 线程的数量 */
    private final int parties;
    /* 所有线程到达Barrier后执行的任务 */
    private final Runnable barrierCommand;
    /** 当前的栅栏 */
    private Generation generation = new Generation();
    /**实际中仍在等待的线程数*/
    private int count;
}    

然后我们来看一下核心方法await()是如何实现的?

public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen;
        }
    }

 private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            final Generation g = generation;

            if (g.broken)
                throw new BrokenBarrierException();

            if (Thread.interrupted()) {
                breakBarrier();
                throw new InterruptedException();
            }
           //count减1,表示还未到达屏障点的线程数量
           int index = --count;
           //如果所有线程都到了屏障点,那么就由最后一个到达的线程执行Commond
           if (index == 0) {  // tripped
               //表示是否执行了Commond
               boolean ranAction = false;
               try {
                   final Runnable command = barrierCommand;
                   if (command != null)
                       command.run();
                   ranAction = true;
                   //屏障被打破了,那就换一块屏障,用来进行下一次的拦截
                   nextGeneration();
                   return 0;
               } finally {
                   //如果没有执行Commond,也就是发生了意外
                   if (!ranAction)
                       breakBarrier();
               }
           }

            // 线程一直做for循环,直到发生中断或者超市或者broken
            for (;;) {
                try {
                    if (!timed)
                        trip.await();
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        Thread.currentThread().interrupt();
                    }
                }

                if (g.broken)
                    throw new BrokenBarrierException();

                if (g != generation)
                    return index;

                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }

breakBarrier()和nextGeneration()

//表示顺利执行了Commond,换一下屏障
private void nextGeneration() {
        // 让阻塞的线程继续执行下去
        trip.signalAll();
        // 重置count 
        count = parties;
        //换一块屏障
        generation = new Generation();
    }

//表示Commond执行出现了意外,修改broken的值,然后继续执行被屏障拦截的线程
private void breakBarrier() {
        //设置broken 为true
        generation.broken = true;
         // 重置count 
        count = parties;
        // 让阻塞的线程继续执行下去
        trip.signalAll();
    }

reset()方法

//就是为了重置屏障
 public void reset() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            breakBarrier();   // break the current generation
            nextGeneration(); // start a new generation
        } finally {
            lock.unlock();
        }
    }

你可能感兴趣的:(JAVA并发)