Numpy/Pytorch之数据类型与强制类型转换

目录

1.数据类型简介

Numpy

Pytorch

2.Python的type()函数

3.Numpy/Pytorch的dtype属性

4.Numpy中的类型转换

先聊聊我为什么会用到这个函数(不看跳过)

astype()函数

输出

4.Pytorch中的类型转换

Way1 : 变量直接调用类型

Way2 : 变量调用pytorch中的type函数

Way3 : 变量调用pytorch中的type_as函数


 

 

1.数据类型简介

Numpy

NumPy 支持比 Python 更多种类的数值类型。 下表显示了 NumPy 中定义的不同标量数据类型。

序号 数据类型及描述
1. bool_存储为一个字节的布尔值(真或假)
2. int_默认整数,相当于 C 的long,通常为int32或int64
3. intc相当于 C 的int,通常为int32或int64
4. intp用于索引的整数,相当于 C 的size_t,通常为int32或int64
5. int8字节(-128 ~ 127)
6. int1616 位整数(-32768 ~ 32767)
7. int3232 位整数(-2147483648 ~ 2147483647)
8. int6464 位整数(-9223372036854775808 ~ 9223372036854775807)
9. uint88 位无符号整数(0 ~ 255)
10. uint1616 位无符号整数(0 ~ 65535)
11. uint3232 位无符号整数(0 ~ 4294967295)
12. uint6464 位无符号整数(0 ~ 18446744073709551615)
13. float_float64的简写
14. float16半精度浮点:符号位,5 位指数,10 位尾数
15. float32单精度浮点:符号位,8 位指数,23 位尾数
16. float64双精度浮点:符号位,11 位指数,52 位尾数
17. complex_complex128的简写
18. complex64复数,由两个 32 位浮点表示(实部和虚部)
19.

complex128复数,由两个 64 位浮点表示(实部和虚部)

直接使用类型名很可能会报错,正确的使用方式是np.调用,eg,  np.uint8

 

Pytorch

Torch定义了七种CPU张量类型和八种GPU张量类型,这里我们就只讲解一下CPU中的,其实GPU中只是中间加一个cuda即可,如torch.cuda.FloatTensor

  • torch.FloatTensor(2,3) 构建一个2*3 Float类型的张量
  • torch.DoubleTensor(2,3) 构建一个2*3 Double类型的张量
  • torch.ByteTensor(2,3) 构建一个2*3 Byte类型的张量
  • torch.CharTensor(2,3) 构建一个2*3 Char类型的张量
  • torch.ShortTensor(2,3) 构建一个2*3 Short类型的张量
  • torch.IntTensor(2,3) 构建一个2*3 Int类型的张量
  • torch.LongTensor(2,3) 构建一个2*3 Long类型的张量

 

同样,直接使用类型名很可能会报错,正确的使用方式是torch.调用,eg,torch.FloatTensor()

 

 

2.Python的type()函数

type函数可以由变量调用,或者把变量作为参数传入。

返回的是该变量的类型,而非数据类型。

data = np.random.randint(0, 255, 300)
print(type(data))

输出

 

3.Numpy/Pytorch的dtype属性

返回值为变量的数据类型

t_out = torch.Tensor(1,2,3)
print(t_out.dtype)

输出

torch.float32

t_out = torch.Tensor(1,2,3)
print(t_out.numpy().dtype)

输出

float32

 

 

4.Numpy中的类型转换

 

先聊聊我为什么会用到这个函数(不看跳过)

为了实施trochvision.transforms.ToPILImage()函数

于是我想从numpy的ndarray类型转成PILImage类型

我做了以下尝试

data = np.random.randint(0, 255, 300)
n_out = data.reshape(10,10,3)
print(n_out.dtype)
img = transforms.ToPILImage()(n_out)
img.show()

但是很遗憾,报错了

raise TypeError('Input type {} is not supported'.format(npimg.dtype))
TypeError: Input type int32 is not supported

因为要将ndarray转成PILImage要求ndarray是uint8类型的。

于是我认输了。。。

使用了

n_out = np.linspace(0,255,300,dtype=np.uint8)
n_out = n_out.reshape(10,10,3)
print(n_out.dtype)
img = torchvision.transforms.ToPILImage()(n_out)
img.show()

得到了输出

uint8

Numpy/Pytorch之数据类型与强制类型转换_第1张图片    嗯,显示了一张图片

但是呢,就很憋屈,和想要的随机数效果不一样。

于是我用了astype函数

 

astype()函数

由变量调用,但是直接调用不会改变原变量的数据类型,是返回值是改变类型后的新变量,所以要赋值回去。

n_out = n_out.astype(np.uint8)
#初始化随机数种子
np.random.seed(0)

data = np.random.randint(0, 255, 300)
print(data.dtype)
n_out = data.reshape(10,10,3)

#强制类型转换
n_out = n_out.astype(np.uint8)
print(n_out.dtype)

img = transforms.ToPILImage()(n_out)
img.show()

输出

int32
uint8

Numpy/Pytorch之数据类型与强制类型转换_第2张图片

 

 

4.Pytorch中的类型转换

pytorch中没有astype函数,正确的转换方法是

Way1 : 变量直接调用类型

 

tensor = torch.Tensor(3, 5)

torch.long() 将tensor投射为long类型

newtensor = tensor.long()

torch.half()将tensor投射为半精度浮点类型

newtensor = tensor.half()

torch.int()将该tensor投射为int类型

newtensor = tensor.int()

torch.double()将该tensor投射为double类型

newtensor = tensor.double()

torch.float()将该tensor投射为float类型

newtensor = tensor.float()

torch.char()将该tensor投射为char类型

newtensor = tensor.char()

torch.byte()将该tensor投射为byte类型

newtensor = tensor.byte()

torch.short()将该tensor投射为short类型

newtensor = tensor.short()

同样,和numpy中的astype函数一样,是返回值才是改变类型后的结果,调用的变量类型不变

 

Way2 : 变量调用pytorch中的type函数

type(new_type=None, async=False)如果未提供new_type,则返回类型,否则将此对象转换为指定的类型。 如果已经是正确的类型,则不会执行且返回原对象。

用法如下:

self = torch.LongTensor(3, 5)
# 转换为其他类型
print self.type(torch.FloatTensor)

 

Way3 : 变量调用pytorch中的type_as函数

如果张量已经是正确的类型,则不会执行操作。具体操作方法如下:

self = torch.Tensor(3, 5)
tesnor = torch.IntTensor(2,3)
print self.type_as(tesnor)

 

 

你可能感兴趣的:(Numpy,Pytorch,Numpy,Pytorch)