Tensorflow 图片爬虫和迁移学习代码示例

 

说到迁移学习,讲的通俗点就是,利用别人的已经训练过的,只要训练结尾,就可以快速训练模型,就是站在巨人的肩膀上做事的道理!话不多说,直接看代码!在这里重重感谢莫烦老师!注:我的开发环境是VS2017!

 

这个例子是区分猫和老虎的例子!首先,我们需要准备大量猫和老虎的照片,这里可以百度图片里爬虫得到!

def Search(name,localpath,page):

    os.makedirs(localpath, exist_ok=True)

    params = {
        'tn' : 'resultjsonavatarnew',
        'ie' : 'utf-8',
        'cg' : '',
        'itg' : '',
        'z' : '0',
        'fr' : '',
        'width' : '',
        'height' : '',
        'lm' : '-1',
        'ic' : '0',
        's' : '0',
        'word' : name,
        'st' : '-1',
        'gsm' : '',
        'rn' : '30'
        };

    params['pn'] = '%d' % page
    Request(params,localpath)
    return ;

 

def Request(param,path):

    searchurl  = 'http://image.baidu.com/search/avatarjson'
    response = requests.get(searchurl,params =param )

    json  = response.json()['imgs']

    for i in range(0,len(json)):
        filename = os.path.split(json[i]['objURL'])[1]
        Download(json[i]['objURL'],filename,path)
       

def Download(url,filename,filepath):

    path = os.path.join(filepath,filename)
    try:
        urlretrieve(url,path)
        print('Downloading Images From ', url)
    except:
        print('Downloading None Images!')

 

if __name__ =='__main__':

    for i in range(0,25):
      Search('老虎','data/tiger',i)
      Search('猫','data/cat',i)

 

 

 

运行 以上这个例子,就可以到很多图片,这里我会在发表一篇博客,详细解释和感谢给予我知识的人!或者直接到我的百度云里下载*************************链接:我们用到的训练样例---百度云:点击打开链接   

下面步入我们的重点 -----迁移学习:我用的是  vgg16  别人训练好的一半模型,在加上一部分自己的,就构成了自己的一套模型!

我们用到的vgg16.npy --百度云:点击打开链接

我们逐行解释

 

 

代码如下:

import requests
from urllib.request import urlretrieve
import os
import numpy as np
import tensorflow as tf
import skimage.io
import skimage.transform
import matplotlib.pyplot as plt

 

#这段代码是将文件夹中的图片读出来,并且统一好规格,224*224的规格

def load_img(path):

    img = skimage.io.imread(path)

    img = img / 255.0

    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]

    resized_img = skimage.transform.resize(crop_img, (224, 224))[None, :, :, :]   # shape [1, 224, 224, 3]

    return resized_img

 

#这里指从图片中读取数据,并且我们自己规定身体长度为一种结果特征,以此来进行区别和训练,注意这里只是指一种条件,方便训练,事实上也可以多种或者其他的条件!

 

def load_data():

    imgs = {'tiger': [], 'cat': []}

    for k in imgs.keys():

        dir = 'data/' + k

        for file in os.listdir(dir):

            if not file.lower().endswith('.jpg'):
                continue
            try:
                resized_img = load_img(os.path.join(dir, file))
            except OSError:
                continue
            imgs[k].append(resized_img)
            if len(imgs[k]) == 400:      
                break
        print('***',k, len(imgs[k]))

    tigers_y = np.maximum(36, np.random.randn(len(imgs['tiger']), 1) * 32 +180)

    cat_y = np.maximum(10, np.random.randn(len(imgs['cat']), 1) * 8 + 40)

    return imgs['tiger'], imgs['cat'], tigers_y, cat_y

 

 

#这里就是训练的和预测的主体部分了

class Vgg16:

    vgg_mean = [103.939, 116.779, 123.68]

 

 

    def __init__(self,vgg16_npy_path= None,restore_from=None, **kwargs):

        try:
            self.data_dict = np.load(vgg16_npy_path, encoding='latin1').item()   #这里我们将vgg16.npy里的参数导入

        except FileNotFoundError:
            print('Something error about the vgg_npy')

 

        self.tfx = tf.placeholder(tf.float32, [None, 224, 224, 3])
        self.tfy = tf.placeholder(tf.float32, [None, 1])

 

        red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=self.tfx * 255.0)

 

#这里需要将图片的rgb格式转化为bgr格式。

        bgr = tf.concat(axis=3, values=[

            blue - self.vgg_mean[0],
            green - self.vgg_mean[1],
            red - self.vgg_mean[2],

        ])

 

#这里我们都是再用vgg16.npy中的参数来进行前面部分的训练和预测 

       conv1_1 = self.conv_layer(bgr, "conv1_1")
        conv1_2 = self.conv_layer(conv1_1, "conv1_2")
        pool1 = self.max_pool(conv1_2, 'pool1')


        conv2_1 = self.conv_layer(pool1, "conv2_1")
        conv2_2 = self.conv_layer(conv2_1, "conv2_2")
        pool2 = self.max_pool(conv2_2, 'pool2')


        conv3_1 = self.conv_layer(pool2, "conv3_1")
        conv3_2 = self.conv_layer(conv3_1, "conv3_2")
        conv3_3 = self.conv_layer(conv3_2, "conv3_3")
        pool3 = self.max_pool(conv3_3, 'pool3')


        conv4_1 = self.conv_layer(pool3, "conv4_1")
        conv4_2 = self.conv_layer(conv4_1, "conv4_2")
        conv4_3 = self.conv_layer(conv4_2, "conv4_3")
        pool4 = self.max_pool(conv4_3, 'pool4')


        conv5_1 = self.conv_layer(pool4, "conv5_1")
        conv5_2 = self.conv_layer(conv5_1, "conv5_2")
        conv5_3 = self.conv_layer(conv5_2, "conv5_3")
        pool5 = self.max_pool(conv5_3, 'pool5')

 

#事实上,我们训练的部分只有一下两个神经网络层,但这两个就足以我们训练自己的模型了

        self.flatten = tf.reshape(pool5,[-1,7*7*512])
        self.fc_6 = tf.layers.dense(self.flatten,256,tf.nn.relu,name = 'fc6')
        self.out = tf.layers.dense(self.fc_6,1,name = 'fc_out')

        self.sess = tf.Session()

 

#这里我们进行判断是 区分训练还是预测,这两个方法都要用到整个类,所以这里通过有无文件路径进行了判断       
        if restore_from:

            saver = tf.train.Saver()
            saver.restore(self.sess, restore_from)

        else:   # training graph

            self.loss = tf.losses.mean_squared_error(labels=self.tfy, predictions=self.out)
            self.train_op = tf.train.RMSPropOptimizer(0.001).minimize(self.loss)
            self.sess.run(tf.global_variables_initializer())

        return super().__init__(**kwargs)      

 

 

 

#这里我们添加我们的卷积层,注意我们里面的参数都是来自于vgg16.npy

  def conv_layer(self,conv_in,name):

        with tf.variable_scope(name):

            conv = tf.nn.conv2d(conv_in,self.data_dict[name][0],[1,1,1,1],padding = 'SAME')
            l_out = tf.nn.relu(tf.nn.bias_add(conv,self.data_dict[name][1]))
            return l_out

#池化层

  def max_pool(self,conv_in,name):
        return tf.nn.max_pool(conv_in, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)

#类中的训练函数

  def train(self,x,y):

 

        loss,_ = self.sess.run([self.loss, self.train_op], {self.tfx: x, self.tfy: y})
        return loss

#类中预测函数

  def predict(self,paths):
      
        fig, axs = plt.subplots(1, 2)
        for i, path in enumerate(paths):
            x = load_img(path)
            length = self.sess.run(self.out, {self.tfx: x})
            axs[i].imshow(x[0])
            if length<80:
                animal_ = 'This is a cute cat!'
            else:
                animal_ = 'This is a fucking tiger!'
            axs[i].set_title(animal_+' body length: %.1f cm'% length)
            axs[i].set_xticks(()); axs[i].set_yticks(())
        plt.show()

#类中保存模型函数

  def save(self, path='model/transform_learning'):
        saver = tf.train.Saver()
        saver.save(self.sess, path, write_meta_graph=False)

 

#这里是主函数的训练函数,进行整体训练

def main_train():

    tigers_x, cats_x, tigers_y, cats_y = load_data()
  
    plt.hist(tigers_y, bins=20, label='Tigers')
    plt.hist(cats_y, bins=10, label='Cats')
    plt.legend()
    plt.xlabel('length')
    plt.ion()
    plt.show()     #显示猫和老虎的身长直方图

 

    xs = np.concatenate(tigers_x+cats_x, axis =0)
    ys = np.concatenate((tigers_y,cats_y), axis =0)    #这里将数据混合,注意顺序

 

    vgg16 = Vgg16(vgg16_npy_path = 'vgg16.npy')   #这里将vgg16.npy添加进来,初始化类


    for i in range(100):

 

        batch_idx = np.random.randint(0,len(xs),6)
        loss  = vgg16.train(xs[batch_idx],ys[batch_idx])
        print(i,":get the train loss/",loss)

 

    vgg16.save('model/transform_learning')#这里结束时保存模型

 

#这是预测函数,我们采用了两张图片来进行预测

def main_to_pred():
    vgg_pred = Vgg16(vgg16_npy_path = 'vgg16.npy',restore_from = 'model/transform_learning')
    vgg_pred.predict(['pred_data/pred_cat.jpg','pred_data/pred_tiger.jpg'])

 

 

#注意主函数,先爬图片,后训练,在预测,分开完成!!!!!!

if __name__ =='__main__':

    #for i in range(20,25):
    #  Search('老虎','data/tiger',i)
    #  Search('猫','data/cat',i)

    main_train()
    main_to_pred()

 

训练得是的样子是这样的:

Tensorflow 图片爬虫和迁移学习代码示例_第1张图片

 

预测时候得样子是这样的

 

Tensorflow 图片爬虫和迁移学习代码示例_第2张图片

是不是很神奇啊!!

 

以上就是代码的全部内容,有了一定的Tensorflow CNN得基础,就可以尝试这个代码啦,我只注释了关键得部分,其他语句详细的内容参考:点击打开链接

VGG得相关内容网址:点击打开链接

在这里我要再次感谢莫烦老师,希望大家可以去支持他的工作,他的迁移学习视频链接:点击打开链接

 

 

你可能感兴趣的:(Machine,Learning)