java使用spark2开发本地测试的wordCount程序

package cn.spark.study.core;

import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import scala.Tuple2;

/**
 * 使用java开发本地测试的wordCount程序
 * @author meng
 *
 */
public class WordCount {
	
	private static final Logger logger = LoggerFactory.getLogger(WordCountCluster.class); 
	
	public static void main(String[] args) {
		
		//创建sparkConf对象,设置spark应用的配置信息
		SparkConf conf = new SparkConf()
				.setAppName("WordCount")
				.setMaster("local");  //spark应用程序要连接的spark集群的master节点的url,local代表的是本地运行
				//.setMaster("spark://ip:port");
		
		//创建JavaSparkContext对象
		JavaSparkContext sc = new JavaSparkContext(conf);
		
		//针对输入源(hdfs文件、本地文件等)创建一个初始的RDD   
		JavaRDD lines = sc.textFile("G://bigData/doc/test/meng.txt");
		
		//对初始RDD进行transformation操作,如flatMap、mapToPair、reduceByKey
		
		//将每一行拆分成单个的单词
		//FlatMapFunction的两个泛型参数代表了输入输出的类型
		JavaRDD words = lines.flatMap(new FlatMapFunction() {

			private static final long serialVersionUID = 1L;

			@Override
			public Iterator call(String line) throws Exception {
				return Arrays.asList(line.split(" ")).iterator();
			}
		});
		
		//需要将每一个单词映射为(单词,1)的格式
		//JavaPairRDD的两个参数代表了Tuple元素的第一个值和第二个值
		JavaPairRDD pairs = words.mapToPair(new PairFunction() {

			private static final long serialVersionUID = 1L;

			@Override
			public Tuple2 call(String word) throws Exception {
				return new Tuple2(word,1);
			}
		});
		
		//需要以单词作为key,统计每个单词出现的次数
		JavaPairRDD wordCounts = pairs.reduceByKey(new Function2() {
			
			private static final long serialVersionUID = 1L;

			@Override
			public Integer call(Integer v1, Integer v2) throws Exception {
				return v1 + v2;
			}
		});
		
		//foreach触发程序执行
		wordCounts.foreach(new VoidFunction>() {
			
			private static final long serialVersionUID = 1L;

			@Override
			public void call(Tuple2 wordCount) throws Exception {
				System.out.println(wordCount._1 + " appeared " + wordCount._2 + " times.");
			}
		});
		
		sc.close();
		
	}
}

 

你可能感兴趣的:(spark)