八大排序算法(1)-归并排序

1.归并排序的基本思想

将待排序序列R[0...n-1]看成是n个长度为1的有序序列,将相邻的有序表成对归并,得到n/2个长度为2的有序表;将这些有序序列再次归并,得到n/4个长度为4的有序序列;如此反复进行下去,最后得到一个长度为n的有序序列。

综上可知:

归并排序其实要做两件事:

(1)“分解”——将序列每次折半划分。

(2)“合并”——将划分后的序列段两两合并后排序。

我们先来考虑第二步,如何合并?

在每次合并过程中,都是对两个有序的序列段进行合并,然后排序。

这两个有序序列段分别为 R[low, mid] 和 R[mid+1, high]。

先将他们合并到一个局部的暂存数组R2中,带合并完成后再将R2复制回R中。

为了方便描述,我们称 R[low, mid] 第一段,R[mid+1, high] 为第二段。

每次从两个段中取出一个记录进行关键字的比较,将较小者放入R2中。最后将各段中余下的部分直接复制到R2中。

经过这样的过程,R2已经是一个有序的序列,再将其复制回R中,一次合并排序就完成了。

package com.ustc.algorithm;

import java.util.Arrays;

/** 
* @author 王聪
* @version 创建时间:2017年2月24日 下午7:57:17 
* 类说明 
*/
public class MergeSort {
    /**
     * 归并排序
     * 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列
     * 时间复杂度为O(nlogn)
     * 稳定排序方式
     * @param nums 待排序数组
     * @return 输出有序数组
     */
    public static int[] sort(int[] nums, int low, int high) {
        int mid = (low + high) / 2;
        while (low < high) {
            // 左边
            sort(nums, low, mid);
            // 右边
            sort(nums, mid + 1, high);
            // 左右归并
            merge(nums, low, mid, high);
        }
        return nums;
    }

    public static void merge(int[] nums, int low, int mid, int high) {
        int[] temp = new int[high - low + 1];
        int i = low;// 左指针
        int j = mid + 1;// 右指针
        int k = 0;

        // 把较小的数先移到新数组中
        while (i <= mid && j <= high) {
            if (nums[i] < nums[j]) {
                temp[k++] = nums[i++];
            } else {
                temp[k++] = nums[j++];
            }
        }

        // 把左边剩余的数移入数组
        while (i <= mid) {
            temp[k++] = nums[i++];
        }

        // 把右边边剩余的数移入数组
        while (j <= high) {
            temp[k++] = nums[j++];
        }

        // 把新数组中的数覆盖nums数组
        for (int k2 = 0; k2 < temp.length; k2++) {
            nums[k2 + low] = temp[k2];
        }
    }

    
    // 归并排序的实现
    public static void main(String[] args) {

        int[] nums = { 2, 7, 8, 3, 1, 6, 9, 0, 5, 4 };

        MergeSort.sort(nums, 0, nums.length-1);
        System.out.println(Arrays.toString(nums));
    }
}

你可能感兴趣的:(八大排序算法(1)-归并排序)