- LORA的魔法棒:在Stable Diffusion中挥洒注意力机制的优化咒语 ??
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
LORA的魔法棒:在StableDiffusion中挥洒注意力机制的优化咒语??欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:DTcode7的博客首页。一个做过前端开发的产品经理,经历过睿智产品的折磨导致脱发之后,励志要翻身农奴把歌唱,一边打入敌人内部一边持续提升自己,为我们广大开发同胞
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- HoRain云--无需修改BIOS!Linux系统迁移根目录到新磁盘终极指南
HoRain 云小助手
linux运维服务器
HoRain云小助手:个人主页⛺️生活的理想,就是为了理想的生活!⛳️推荐前些天发现了一个超棒的服务器购买网站,性价比超高,大内存超划算!忍不住分享一下给大家。点击跳转到网站。目录⛳️推荐一、原理简析二、操作步骤(以Ubuntu为例)1.准备工作2.临时挂载新磁盘3.修改GRUB配置4.更新引导配置5.验证配置(重要!)三、故障排查(附解决方案)四、永久生效设置五、注意事项一、原理简析通过GRUB
- HoRain云--URI vs URL vs URN:彻底搞懂三者的区别与联系
HoRain 云小助手
java前端开发语言
HoRain云小助手:个人主页⛺️生活的理想,就是为了理想的生活!⛳️推荐前些天发现了一个超棒的服务器购买网站,性价比超高,大内存超划算!忍不住分享一下给大家。点击跳转到网站。目录⛳️推荐URIvsURLvsURN:彻底搞懂三者的区别与联系一、核心概念解析1.URI(统一资源标识符)2.URL(统一资源定位符)3.URN(统一资源名称)二、三者关系图解三、关键区别对比表四、日常应用场景五、技术冷知
- HoRain云--Node.js文件下载服务实战:Express实现安全高效的文件传输
HoRain云小助手
node.jsexpress安全
HoRain云小助手:个人主页个人专栏:《Linux系列教程》《c语言教程》⛺️生活的理想,就是为了理想的生活!⛳️推荐前些天发现了一个超棒的服务器购买网站,性价比超高,大内存超划算!忍不住分享一下给大家。点击跳转到网站。专栏介绍专栏名称专栏介绍《C语言》本专栏主要撰写C干货内容和编程技巧,让大家从底层了解C,把更多的知识由抽象到简单通俗易懂。《网络协议》本专栏主要是注重从底层来给大家一步步剖析网
- BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
数据集
2024-11-29,由罗马尼亚布加勒斯特大学创建BioDeepAV数据集,它专门设计来评估最先进的深度伪造检测器在面对未见过的深度伪造生成器时的泛化能力,这对于提高检测器的鲁棒性和适应性具有重要意义。一、研究背景:随着生成模型的快速发展,深度伪造内容的逼真度不断提高,人们越来越难以在线检测出被操纵的媒体内容,从而容易受到各种诈骗的欺骗。这不仅对个人隐私构成威胁,也对社会信任和民主构成挑战。目前遇
- Excel宏新手入门:开启高效数据处理之旅
CodeJourney.
算法人工智能数据库
Excel宏新手入门:开启高效数据处理之旅在数据处理和办公自动化领域,Excel是一款强大且应用广泛的工具。而Excel宏,作为其中一项极具价值的功能,能帮助用户自动执行重复性任务,大幅提升工作效率。对于Excel宏的新手而言,从基础开始学习并逐步掌握这一技能,将为日常工作带来极大便利。一、认识Excel宏:自动化办公的“魔法棒”Excel宏本质上是一组自动执行的操作指令集合,可类比为一个不知疲倦
- [特殊字符] Java Stream流:让集合处理变得如此优雅!
泥潭硬拔
javastreamjava集合
大家好!今天我们来聊一个超级实用的话题:JavaStream流。别被这个名字吓到,它其实就是一个让我们处理数据更轻松的"魔法工具"!什么是Stream流?简单来说,Stream流就像是一条传送带,我们可以把数据放在上面,然后对它们进行各种操作。比如筛选、排序、转换等等,就像在美食工厂的流水线上一样!为什么要用Stream流?代码更简洁(再见了,又臭又长的for循环!)可读性更强(像说人话一样写代码
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 第十三届蓝桥杯研究生组C++省赛
格格巫ZYX
算法c语言c++蓝桥杯
有一根围绕原点O顺时针旋转的棒OA,初始时指向正上方(Y轴正向)。在平面中有若干物件,第i个物件的坐标为(xi,yi),价值为zi。当棒扫到某个物件时,棒的长度会瞬间增长zi,且物件瞬间消失(棒的顶端恰好碰到物件也视为扫到),如果此时增长完的棒又额外碰到了其他物件,也按上述方式消去(它和上述那个点视为同时消失)。如果将物件按照消失的时间排序,则每个物件有一个排名,同时消失的物件排名相同,请输出每个
- python执行cmd命令行异步执行_Python 异步调用命令行工具
weixin_39719732
当你在自己的Python程序中采用了基于事件循环的异步编程方法之后,你就会发现自己不自觉地被其牢牢吸引住,并不是说这一方法多么棒,而是因为你不得不想办法保证程序中的任意环节都不能是阻塞的!例如当前的场景是希望从MongoDB中读取每一条未处理过的数据,下载并保存其中的图片信息,然后更新数据库的内容。Python常用的MongoDB异步驱动是Motor:结合asyncio使用方法如下:importm
- 【扩散模型Diffusion Model系列】1-一篇文章带你快速入门扩散模型Diffusion Model,个人入门学习路线+优质学习博客资料
Leafing_
DiffusionModel扩散模型人工智能深度学习AIGC扩散模型AI视频生成算法人工智能深度学习
文章目录零、写在前面一、扩散理论缘起DDPM再见,马尔科夫!高视角DDIMLevelup!更高视角SDE、ScoreMatching、ODE走直线!RectifiedFlow和FlowMatching二、模型结构传统派LDMUNet:StableDiffusion维新派MMDiT:StableDiffusion3/Flux三、加速采样多走一步,再比较ConsistencyModel/LCM半白箱采
- golang从入门到做牛马:第八篇-Go语言运算符-数学与逻辑的“魔法棒”
王盼达
golang从入门到做牛马golang开发语言后端
在Go语言中,运算符就像是数学与逻辑的“魔法棒”,它们可以在程序运行时执行各种操作。Go语言提供了丰富的运算符,包括算术运算符、关系运算符、逻辑运算符、位运算符、赋值运算符和其他运算符。接下来,让我们一起探索这些运算符的奥秘。算术运算符:数字的“加减乘除”算术运算符用于执行基本的数学运算。以下是Go语言中的算术运算符及其示例:运算符描述示例+相加A+B输出结果30-相减A-B输出结果-10*相乘A
- PCL 点云迭代加权最小二乘法拟合平面(抑制噪声)
大鱼BIGFISH
点云进阶最小二乘法平面C++PCL迭代加权
文章目录一、简介二、实现代码三、实现效果参考资料一、简介受到之前博客的启发(Matlab点云最小二乘法拟合平面(剔除噪声)),我们不仅可以通过剔除一些异常点来拟合更为合适的平面,而且还可以在这个过程中对每个点进行加权来抑制噪声点,双管齐下也可以使得算法更具鲁棒性,并拟合出合适的平面,具体过程如下所示:1、首先使用加权的最小二乘法拟合一个平面系数的初值。2、计算所有有效点到拟合平面的距离did_i
- Keil5 生成 *.LIB 文件
等и一会そ儿
单片机嵌入式硬件
2025年1月17日研究keil5魔术棒时发现可以配lib库,研究后整理笔记如下:在Keil5中生成并调用库文件(.lib文件)的步骤如下:生成库文件创建项目:首先,创建一个新的Keil项目,并添加需要生成库文件的源文件(.c文件)和头文件(.h文件)。在文件树中对于不希望编译的文件可以直接右击Option,取消`IncludeinTargetBuild`从而取消编译。配置项目:在项目设置中,选择
- 仓储系统货位优化毕业论文【Flexsim仿真】
aikelele
人工智能
一、内容简介由堆垛机、货架、输送系统、管理系统、控制系统等组成的传统堆垛式仓储系统因为其成熟的技术和推广方式、高效等特点广泛的应用在物流、车间、制造等行业。但是堆垛机仓库每个巷道都会拥有一台堆垛机,其作业方式受到限制,鲁棒性比较差,一个巷道堆垛机出现问题题将导致整个巷道作业停止。同时,堆垛机立体仓库的可协调性比较差,企业的产品有旺季、淡季之分,在旺季时可能满足正常的出入库需求;在淡季时,可能会出现
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 跨领域算法安全优化与可解释实践
智能计算研究中心
其他
内容概要作为系统性研究框架,《跨领域算法安全优化与可解释实践》从算法研发的全生命周期切入,重点解决多领域交叉应用中的核心矛盾。通过整合联邦学习的分布式架构与量子计算的高效特性,构建兼顾隐私保护与运算效率的算法优化范式,同时引入动态可解释性分析技术,为医疗影像诊断、金融风险预测等高敏感场景提供决策透明度保障。在技术路径层面,研究聚焦特征工程的鲁棒性设计、超参数的自适应调优策略,以及生成对抗网络在数据
- 池化的定义与核心思想
code 旭
AI人工智能学习pythonnumpy人工智能
一、池化的定义与核心思想定义:池化是卷积神经网络(CNN)中的一种下采样操作,用于降低特征图的空间维度(宽高),保留主要特征。核心目标:减少计算量:缩小特征图尺寸,降低后续层参数规模。增强模型鲁棒性:对微小平移、旋转等变化不敏感。防止过拟合:通过降维减少冗余信息。二、池化的数学公式1.最大池化(MaxPooling)取池化窗口内的最大值:yi,j=maxp=0kh−1maxq=0kw−1xi⋅
- 针对AF调试过程中PD多窗机制是如何打分的
爱写BUG的长歌
人工智能计算机视觉算法
在AF(自动对焦)调试中,PD多窗机制(PhaseDetectionMulti-Window)是提升相位对焦精度和鲁棒性的关键技术,其核心是通过在画面中划分多个相位检测窗口,分别计算各窗口的相位差(PhaseDifference)并进行综合评分,最终选择最优对焦位置。以下是其打分机制的核心逻辑和调试要点:1.多窗口布局与权重分配窗口划分根据Sensor的PDAF像素分布,将画面划分为多个区域(例如
- 「再见爱人Ⅳ」婚姻体检题汇总
myqijin
笔记笔记
你们的结婚周年纪念日是什么时候?对方的生日是?对方是在哪里出生的?对方的身份证号码是?对方最喜欢的花是?对方最喜欢的颜色是?对方最讨厌吃的食物是?对方最喜欢吃的食物是?对方最喜欢的动物是?对方最讨厌的家务活是?对方最擅长做的菜是?对方最喜欢的季节是?对方的血型是?对方最大的爱好?对方最喜欢的运动是?对方的鞋码是?对方最喜欢的睡姿是?对方最喜欢读哪种类型的书?对方最喜欢的电影是?对方最想去国内哪个城
- 深度学习 PyTorch 中 18 种数据增强策略与实现
@Mr_LiuYang
计算机视觉基础数据增强深度学习torchvisiontransforms
深度学习pytorch之简单方法自定义9类卷积即插即用数据增强通过对训练数据进行多种变换,增加数据的多样性,它帮助我们提高模型的鲁棒性,并减少过拟合的风险。PyTorch提供torchvision.transforms模块丰富的数据增强操作,我们可以通过组合多种策略来实现复杂的增强效果。本文将介绍18种常用的图像数据增强策略,并展示如何使用PyTorch中的torchvision.transfor
- 在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
蚂蚁质量
软件测试matlab矩阵
在MATLAB环境中,对矩阵拼接(MatrixConcatenation)的正确性与鲁棒性开展测试时,需要依据不同的拼接场景精心设计测试用例,全面验证矩阵维度、数据顺序、边界条件以及异常处理等关键方面。以下是详尽的测试方法与具体示例:基础功能测试(1)水平拼接([A,B]或horzcat)测试目的:确认在列方向进行拼接后,所得矩阵的尺寸是否准确无误,以及数据排列顺序是否符合预期。测试代码:matl
- 语义检索-BAAI Embedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性
汀、人工智能
LLM工业级落地实践embeddinglangchain人工智能智能问答RAG检索增强生成大模型
语义检索-BAAIEmbedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性语义向量模型(EmbeddingModel)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型
- 面试时,如何回答好“你是怎么测试接口的?”
海姐软件测试
接口测试测试工具面试职场和发展postman
一、回答框架设计(金字塔原理)总述:"我通常采用分层测试策略,遵循需求分析→场景拆解→用例设计→自动化实施→持续监控的闭环流程。以最近测试的支付中台项目为例,核心围绕功能正确性、异常鲁棒性、安全防护、性能基线四个维度展开,下面详细说明各环节的关键动作……"二、分步骤技术解析(STAR法则)1.需求分析阶段-建立测试基准协议与文档解析:"首先确认接口协议类型(HTTP/GRPC/WebSocket等
- 复杂网络;社交网络;社区检测;节点重要性(重要节点识别);舆论动力学模型; 传染病模型 ;蓄意攻击 、随机攻击;网络鲁棒性、脆弱性、稳定性
xiao黄
复杂网络python复杂网络
复杂网络社交网络社区检测节点重要性(重要节点识别)舆论动力学模型传染病模型蓄意攻击随机攻击网络鲁棒性、脆弱性、稳定性Python基本的网络分析详细私聊网络拓扑图连通性网络效率下降
- 25年应该买哪个品牌的nas?
亿欧科技
科技
在如今这个数据量爆炸式增长的时代,大家对数据存储的需求越来越高,NAS私有云也就成了很多人存储和管理数据的好帮手。市场上的NAS私有云品牌多得让人眼花缭乱,到底该怎么选呢?今天就给大家详细讲讲2025年选择NAS私有云品牌的关键标准,顺便给大家重点推荐一款超棒的——绿联NAS。一、挑选NAS私有云品牌的重要标准(一)数据安全保障要到位数据安全可是头等大事。一个好的NAS私有云必须得有好几重数据保护
- [A-29]ARMv8/v9-GIC-中断子系统的安全架构设计(Security/FIQ/IRQ)
奔跑的架构师
ARMv8/ARMv9安全架构安全架构arm开发armlinuxandroid
ver0.1前言打开这篇文章的时候,我们已经为每一个中断信号规划一条路径,在外设和PE-Core之间建立了消息通道,外设有紧急的情况下可以给SOC中的大哥打报告了。下面就把接力棒就交到了CPU手里了,但是PE-Core要交给那个ExceptionLevel以及Security下运行的软件处理呢?本文就要探讨这个课题,也就是吧中断子系统在ARM的安全框架下的工作机制和大家讨论清楚。同样本文也需要一些
- 如何从零开始训练大模型?(附AGI大模型路线图)
脱泥不tony
agi人工智能产品经理语言模型大数据学习AI大模型
1背景根据scalinglaw,模型越大,高质量数据越多,效果越好。但还有一个很直观的情况,随着预训练样本的质量不断提升,训练手段的优化。新的模型,往往效果能轻松反超参数量两倍于它的模型。例如,最新出的minicpm,微信内部评测效果也是非常棒的。跟规模相对接近的2b、7b模型比,得分比qwen2b高,和qwen7b比有的高有的低。这个是minicpm的详细技术文档。https://shengdi
- 基于单片机的室外休闲智能座椅设计(论文+源码)
云山工作室
单片机嵌入式硬件毕业设计毕设
1系统总体设计本课题为基于单片机的室外休闲智能座椅的设计,其可以实现温湿度检测,座椅加热,自动照明,背靠调节等工作。整个系统架构如图2.1所示其中包括了按键模块,温湿度检测模块,显示模块,加热模块,照明模块,按摩模块,背靠调节模块等器件设备。其中,显示模块采用LCD1602液晶显示当前的状态信息;温湿度检测,采用DHT11传感器实现,加热和照明功能,采用继电器间接控制加热棒和LED灯来实现;按摩则
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本