- 计算机网络软考英语题,软考英语考前练习试题及解析(二十)[2]
A兰舍硅藻泥
计算机网络软考英语题
供选择的答案A:①culture②science③education④industryB、D:①equal②universal③different④difficult⑤common⑥bigC:①claim②deny③define④callD:①Importance②Instead③Because④Regardless【解析】参考译文:随着个人计算机的广泛使用,许多教育领域的人士已经
- 【大模型学习】第八章 深入理解机器学习技术细节
好多渔鱼好多
AI大模型机器学习AI大模型人工智能
目录引言一、监督学习(SupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:房价预测二、无监督学习(UnsupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:客户细分三、强化学习(ReinforcementLearning)1.定义与工作原理2.常见应用场景3.应用场景示例:游戏AI四、集成学习(EnsembleLearning)1.
- 成为LLM大师的必读书籍:这几本大模型书籍,详细到让你一篇文章就收藏足够
AGI大模型老王
产品经理大模型教程学习大模型人工智能LLM大模型书籍
以下是几本关于大模型和人工智能领域的经典书籍,它们各自具有独特的特点和适用人群:《深度学习》(DeepLearning)作者:伊恩·古德费洛(IanGoodfellow)、约书亚·本吉奥(YoshuaBengio)、亚伦·库维尔(AaronCourville)简介:《深度学习》是深度学习领域的经典之作,全面介绍了深度学习的基础知识、主要模型及其应用。书中详细讲解了神经网络、卷积神经网络、循环神经网
- 深度学习实战:TensorFlow 开源项目指南
劳治亮
深度学习实战:TensorFlow开源项目指南Deep-Learning-TensorFlow项目地址:https://gitcode.com/gh_mirrors/dee/Deep-Learning-TensorFlow项目介绍本项目基于GitHub仓库https://github.com/blackecho/Deep-Learning-TensorFlow.git,旨在提供一个全面的学习与开发
- 机器学习笔记
有涯小学生
赵卫东机器学习笔记机器学习人工智能
1概述1.1简介机器学习(MachineLearning)是计算机科学的子领域,也是人工智能的一个分支和实现方式。“对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。”(汤姆·米切尔(TomMitchell),1997,MachineLearning)1.2机器学习、人工智能、数据挖掘从本质上看,数据科学的目标是通过处理各
- COMM1170 Organisational Resources
redamancy34
人工智能机器学习
ASSESSMENTGUIDECOMM1170OrganisationalResourcesTerm2,20242AssessmentSummaryAssessmentTaskWeightingDueDate*LearningOutcomesAssessment1:ReflectiveLearningPortfolio1Acollectionofartefactsandreflectivecomm
- [Machine Learning] K-means算法
进阶的小蜉蝣
machinelearning算法kmeans机器学习
HuBERT预训练过程中会用到K-means算法,本文简单介绍一下K-means算法的基本流程。简单地讲,K-means就是给特征向量集进行聚类。给定一个特征向量集{X}和目标聚类数N,K-means会不断迭代,直到X被分成N类,且每一类的中心点不再明显变化。先看一个简单例子:fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotli
- 深度学习现状与未来发展趋势分析报告(深度学习还是主流吗?)
与光同尘 大道至简
深度学习人工智能
此博客分析深度学习当前的主流应用领域、其受关注度的变化趋势、可能的技术替代或补充方案、产业界和学术界的不同发展方向,以及影响其受关注度变化的核心因素。报告将包括结构化分析(背景、现状、挑战、未来趋势)、数据驱动(市场趋势、论文发表量等数据支持)以及行业案例分析,以展示某些行业如何逐步减少对深度学习的依赖。背景深度学习的概念与发展历程:深度学习(DeepLearning)是机器学习中的一类方法,源于
- 创建ASCII数字打印机(OpenCV C++)
河边一只猫
opencvc++cv
学习OpenCV3(中文版)LearningOpenCV3ComputerVisioninC++withtheOpenCVLibrary第四章练习1建立一个500×500大小的单通道图像,每个像素值都为0。a.创建一个ASCII数字打印机,你可以在自己电脑上输入数字,并在一个20像素高、10像素宽的方块中显示数字。当你键入时,数字将从左到右显示,直到到达图像的末尾才停止。b.允许键入回车和退格。c
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- PyTorch 中结合迁移学习和强化学习的完整实现方案
小赖同学啊
人工智能pytorch迁移学习人工智能
结合迁移学习(TransferLearning)和强化学习(ReinforcementLearning,RL)是解决复杂任务的有效方法。迁移学习可以利用预训练模型的知识加速训练,而强化学习则通过与环境的交互优化策略。以下是如何在PyTorch中结合迁移学习和强化学习的完整实现方案。1.场景描述假设我们有一个任务:训练一个机器人手臂抓取物体。我们可以利用迁移学习从一个预训练的视觉模型(如ResNet
- 一文讲清楚自我学习和深度学习
平凡而伟大(心之所向)
人工智能人工智能深度学习机器学习
自我学习(Self-Learning)和深度学习(DeepLearning)是两个不同的概念,但它们在某些应用场景中可以有交集。下面我们将分别介绍这两个概念,并探讨如何将它们结合起来用于自我学习系统。自我学习(Self-Learning)自我学习是指个体或系统通过自主探索、实践和反思来获取知识和技能的过程。它强调的是无需外部直接指导的学习方式,通常包括以下几个方面:自主性:学习者根据自己的兴趣、需
- 【量子退火(Quantum Annealing, QA)在Machine Learning Classification中的应用】
搞技术的妹子
机器学习量子计算人工智能
随着量子计算技术的发展,**量子退火(QuantumAnnealing,QA)成为了优化问题中一种潜力巨大的方法。它不仅可以用于求解传统优化问题,还被逐渐应用于机器学习领域,特别是机器学习分类(MachineLearningClassification)**任务中。在这篇博客中,我们将探讨量子退火在机器学习分类中的应用,并通过一个实际的案例来展示如何使用量子退火优化分类模型。什么是量子退火(Qua
- 【机器学习】Reinforcement Learning-强化学习基本概念
长相忆兮长相忆
深度学习人工智能算法机器学习
1、Q值与V值1.1Q值和V值的定义Q值:也称为动作价值函数,评估动作的价值,它代表了智能体选择这个动作后,一直到最终状态奖励总和的期望,表示为Q(s,a),其中s是状态,a是动作。V值:评估状态的价值,也称为状态价值函数,表示为V(s),其中s是状态。它代表了智能体在这个状态下,一直到最终状态的奖励总和的期望。V值与动作无关只与状态有关。Q值和V值的概念是一致的,都是衡量在马可洛夫树上某一个节点
- 面向对象的前端开发_20多种面向前端开发人员的文档和指南(第11号)
culi3118
编程语言javajavascriptpythonhtmlViewUI
面向对象的前端开发It’sthattimeagaintogetlearning!Asbefore,I’vecollectedanumberofdifferentlearningresources,includingguides,docs,andotherusefulwebsitestohelpyougetuptospeedindifferentareasoffront-enddevelopment
- 大语言模型生成式AI学习笔记——1. 1.1 大语言模型及生成式AI项目生命周期简介——课程简介
预见未来to50
机器学习深度学习(ML/DL)人工智能语言模型学习
GenerativeAIwithLargeLanguageModelsbyDeepLearning.AI&AmazonWebServicesAboutthisCourseInGenerativeAIwithLargeLanguageModels(LLMs),you’lllearnthefundamentalsofhowgenerativeAIworks,andhowtodeployitinreal
- [水]与grok聊Java
啾啾大学习
水java开发语言
摘要:AI时代,二本毕业一般工资一般履历的java程序员要怎么做才能不被淘汰呢?3步之内必有解药?AI带来的问题让AI解决?转行么?先水一篇吧(我知道可能不如去学习,但是我要是学习好我会这个样子,可恶,加油)目录1、AI带来的问题职业危机2、AI带来的机遇2.1、职业发展的帮助职业发展预测可能的职业1.AI工程师(AIEngineer)2.机器学习工程师(MachineLearningEngine
- python调用rust_将字符串列表从Python传递到Rust
weixin_39930144
python调用rust
I'vebeenlearningRustforabouttwoweeksnowandtoday,IgotintoitsFFI.IusedPythontoplaywithRust,usingctypesandlibc.Ipassedintegers,stringsandevenlearnedtopassalistofintegers(thankstothiswonderfulanswer).Then
- python 统计库_《统计学习方法》 Python 库
weixin_39756540
python统计库
新建GitHub仓库仓库名为slmethod,统计学习方法(StatisticalLearningMethod)的简写Public公开仓库勾选InitializethisrepositorywithaREADME.gitignore选择Python添加MITLicensenew下载代码到本地,使用ssh协议。
[email protected]:iOSDevLog/slmethod.git
- An Introduction to Statistical Learning with Applicatio
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介1.1定义统计学习(statisticallearning)是一门研究如何从数据中提取知识并应用于预测、决策或其他目的的一门学科。它是机器学习、数据挖掘、计算机视觉等领域的一个分支,是当前热门的AI方向。1.2特点数据驱动:统计学习倾向于采用结构化的数据——如表格或矩阵形式——作为输入;假设空间少:统计学习通常只考虑一种假设空间,即概率模型或概率分布;模型复杂性
- An Introduction to Statistical Learning with Python 解读及实战指南
蔡鸿烈Hope
AnIntroductiontoStatisticalLearningwithPython解读及实战指南ISL-pythonSolutionstolabsandexcercisesfromAnIntroductiontoStatisticalLearning,asJupyterNotebooks.项目地址:https://gitcode.com/gh_mirrors/is/ISL-python1.
- DiNN学习笔记1-理论部分
瓜皮37
同态加密密码学信息安全神经网络
DiNN学习笔记1-理论部分背景知识机器学习即服务MLaaS中的全同态加密神经网络Fhe-DiNN中的默认设定Fhe-DiNN方案神经元中的计算离散神经网络DiNN评估步骤自举的引入激活函数的同态评估对TFHE的改进明文的打包密钥转换的前置动态变化的消息空间优化盲旋步骤DiNN方案的整体流程参考资料背景知识机器学习即服务机器学习即服务(MachineLearningasaService,MLaaS
- CE 451/551 Computer-Aided Research
后端
CE451/551–Computer-AidedResearchintheChemicalandMaterialsSciences:Homework#10(Graded#2)(Due:Tuesday,4March2025,5:00pm)AswehavenowfinishedlearningthebasicsofPython,itistimetopracticewritingsomeactualco
- 关于STP、RSTP、MSTP协议的常见面试问题
他不爱吃香菜
网络协议网络面试解答面试职场和发展
1.STP、RSTP、MSTP的主要区别是什么?STP(802.1D):功能:防二层环路,收敛慢(30-50秒)。端口状态:5种(Blocking、Listening、Learning、Forwarding等)。负载均衡:不支持,所有VLAN共享一棵树。RSTP(802.1w):改进点:收敛时间缩短至1-3秒。端口角色:新增Alternate/Backup端口。状态简化:3种状态(Discardi
- 强化学习与网络安全资源-论文和环境
AI拉呱
web安全安全
TableofContentsRL-EnvironmentsPapersBooksBlogpostsTalksMiscellaneous↑EnvironmentsPentestingTrainingFrameworkforReinforcementLearningAgents(PenGym)TheARCDPrimary-levelAITrainingEnvironment(PrimAITE)CSL
- Python-Machine-Learning-Cookbook 项目教程
张亭齐Crown
Python-Machine-Learning-Cookbook项目教程Python-Machine-Learning-CookbookCodefilesforPython-Machine-Learning-Cookbook项目地址:https://gitcode.com/gh_mirrors/py/Python-Machine-Learning-Cookbook1.项目目录结构及介绍Python
- Transformer预测 | 基于TCN-Transformer的股票价格预测(Pytorch)
机器学习之心
#Transformer模型transformerpytorch深度学习TCN-Transformer股票价格预测
文章目录预测效果文章概述程序设计参考资料预测效果文章概述Transformer预测|基于TCN-Transformer的股票价格预测(Python)Transformer模型本质上都是预训练语言模型,大都采用自监督学习(Self-supervisedlearning)的方式在大量生语料上进行训练,也就是说,训练这些Transformer模型完全不需要人工标注数据。Transformer模型的标志就
- 机器学习 第一章 绪论
太炀
机器学习机器学习人工智能
1.1引言什么是机器学习(machinelearning)?机器学习是致力于研究如何通过计算手段,利用经验来改善系统自身的性能的学科。在计算机系统中,“经验”以“数据”的形式表现。通过这些数据产生模型(model)的算法,即“学习算法”(learningalgorithm)。如果说计算机科学是研究“算法”的学问,那机器学习就是研究“学习算法”的学问。ps:本系列所说“模型(model)”泛指数据学
- AI驱动的企业学习管理系统
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI、机器学习、深度学习、企业学习管理系统、个性化学习、学习路径推荐、知识图谱1.背景介绍在当今瞬息万变的数字化时代,企业面临着前所未有的挑战和机遇。知识更新速度加快,技术迭代日新月异,员工需要不断学习新技能,提升自身竞争力,才能适应不断变化的市场环境。传统的企业学习管理系统(LearningManagementSystem,LMS)往往以标准化课程和批量学习为主,难以满足员工个性化学习需求,且缺
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement