tf.argmax

文件

math_ops.py

函数定义

def argmax(input,
         axis=None,
         name=None,
         dimension=None,
         output_type=dtypes.int64):
if dimension is not None:
  if axis is not None:
    raise ValueError("Cannot specify both 'axis' and 'dimension'")
  axis = dimension
elif axis is None:
  axis = 0
return gen_math_ops.arg_max(input, axis, name=name,   output_type=output_type)

参数

返回

案例

# axis = 0
import tensorflow as tf
import numpy as np
ipt = np.array([[1,2,1,4],[10,3,2,8],[6,7,9,66],[5,45,78,54]])
res = tf.argmax(ipt,0)  # axis = 0
sess = tf.Session()
opt = sess.run(res)
print(opt)

输出结果为: [1 3 3 2]

输出结果解释
首先,argmax返回的是索引值,返回每一行或者每一列的最大值的索引,当选择axis=1时。表示每一行的最大值,0表示每列的最大值索引,看上面的例子,第一列最大值为10,为该列的第二个,所以索引为1,第二列,最大值为45。为第四个,所以索引为3,第三列最大值为78,为第四个,索引为3,最后一个最大值为66,为第三个,所以索引为2。

# axis = 1
import tensorflow as tf
import numpy as np
ipt = np.array([[1,2,1,4],[10,3,2,8],[6,7,9,66],[5,45,78,54]])
res = tf.argmax(ipt,1)   # axis = 1
sess = tf.Session()
opt = sess.run(res)
print(opt)

[3 0 3 2]

当axis为1,就是比每一行的值,返回最大值在该行的索引,比如,第一行,最大值为4,为第四个,索引为3,第二行最大值为10,为第一个,索引为0,以此类推。
tf.argmin
和argmax格式之类的都是一样,但是返回的是最小值对应的索引
其实tensorflow中的argmin,argmax和numpy中的argmin,argmax是一样的,都是返回索引

你可能感兴趣的:(tf.argmax)