C++ opencv-3.4.1 复杂的图像矫正方法

参考贾志刚的opencv图像处理方法,对一张倾斜图片进行矫正。条条大路通罗马,对一张倾斜图片进,有很多方法,这是最复杂的一种,通过求四个倾斜角点的位置,再设置目标点的位置,通过仿射变换进行图片矫正。

与PS方法的优势就是可以通过代码批量处理图片。

图片:


C++ opencv-3.4.1 复杂的图像矫正方法_第1张图片

只能说这种方法确实比较好,特别是在进行图片批处理的时候,虽然复杂了点,但是能保证对大部分图片效果较好。
主要流程:
1 . 二值化

  1. 形态学操作,去噪点
  2. 进行轮廓查找, 通过 矩形的长款过滤较小和图片的大边框
  3. 霍夫直线变换,查找直线
  4. 过滤直线,通过直线位置和长度确定上下左右四条直线
  5. 求出四条直线
  6. 得到四条直线的交点,这就是物体原始四个角点
  7. 把原始的四个角点,变换到图片的四个角落,透视变换会把相对位置的像素通过线性插值填充
#include 
#include 
#include 

using namespace cv;
using namespace std;
Mat src, dst, gray_src;
char input_image[] = "input image";
char output_image[] = "output image";

int main(int argc, char ** argv){

    src = imread("case5.jpg");
    if (src.empty()){
        printf("colud not load image ..\n");
        return -1;
    }

    namedWindow(input_image, CV_WINDOW_AUTOSIZE);
    namedWindow(output_image, CV_WINDOW_AUTOSIZE);
    imshow(input_image, src);

    // 二值化处理
    Mat binary;
    cvtColor(src, gray_src, COLOR_BGR2GRAY);
    threshold(gray_src, binary, 0, 255, CV_THRESH_BINARY_INV | THRESH_OTSU);
    imshow("binary image", binary);

    // 腐蚀操作
    Mat structureElement = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
    dilate(binary, binary, structureElement); //腐蚀
    imshow("erode", binary);

    // 形态学操作
    Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
    morphologyEx(binary, dst, MORPH_OPEN, kernel, Point(-1, -1), 3);
    imshow("morphology", dst);
    
    



    // 轮廓发现
    bitwise_not(dst, dst, Mat());
    vector> contours;
    vector hireachy;
    int width = src.cols;
    int height = src.rows;
    Mat drawImage = Mat::zeros(src.size(), CV_8UC3);
    findContours(dst, contours, hireachy, CV_RETR_TREE, CHAIN_APPROX_SIMPLE, Point());
    for (size_t t = 0; t < contours.size(); t++){
        Rect rect = boundingRect(contours[t]);
        printf("rect.width : %d, src.cols %d \n ", rect.width, src.cols);
        if (rect.width > (src.cols / 2) && rect.width < (src.cols - 5))
        {
            drawContours(drawImage, contours, static_cast(t), Scalar(0, 0, 255), 2, 8, hireachy, 0, Point());
        }
    }
    imshow("contours", drawImage);


    // 绘制直线
    vector lines;
    Mat contoursImg;
    int accu = min(width * 0.5, height *0.5); 
    cvtColor(drawImage, contoursImg, COLOR_BGR2GRAY);
    Mat linesImage = Mat::zeros(src.size(), CV_8UC3);
    HoughLinesP(contoursImg, lines, 1, CV_PI / 180.0, accu, accu, 0);
    for (size_t t = 0; t < lines.size(); t++){
        Vec4i ln = lines[t];
        line(linesImage, Point(ln[0], ln[1]), Point(ln[2], ln[3]), Scalar(0, 0, 255), 2, 8, 0);

    }
    printf("number of lines : %d", lines.size());
    imshow("lines image :", linesImage);

    // 定位直线
    int deltah = 0;
    Vec4i topLine, bottomLine, leftLine, rightLine;
    for (int i = 0; i < lines.size(); i++){
        Vec4i ln = lines[i];
        deltah = abs(ln[3] - ln[1]);
        if (ln[3] < height / 2.0 && ln[1] < height / 2.0 && deltah < accu - 1){
            topLine = lines[i];
        }
        if (ln[3] > height / 2.0 && ln[1] > height / 2.0 && deltah < accu - 1){
            bottomLine = lines[i];
        }
        if (ln[0] < width / 2.0 && ln[2] < width / 2.0 ){
            leftLine = lines[i];
        }
        if (ln[0] > width / 2.0 && ln[2] > width / 2.0){
            rightLine = lines[i];
        }
    }
    cout << "topLine : " << topLine << endl;
    cout << "bottomLine : " << bottomLine << endl;
    cout << "leftLine : " << leftLine << endl;
    cout << "rightLine : " << rightLine << endl;


    // 拟合四条直线方程
    float k1, c1;
    k1 = float(topLine[3] - topLine[1]) / float(topLine[2] - topLine[0]);
    c1 = topLine[1] - k1*topLine[0];
    float k2, c2;
    k2 = float(bottomLine[3] - bottomLine[1]) / float(bottomLine[2] - bottomLine[0]);
    c2 = bottomLine[1] - k2*bottomLine[0];
    float k3, c3;
    k3 = float(leftLine[3] - leftLine[1]) / float(leftLine[2] - leftLine[0]);
    c3 = leftLine[1] - k3*leftLine[0];
    float k4, c4;
    k4 = float(rightLine[3] - rightLine[1]) / float(rightLine[2] - rightLine[0]);
    c4 = rightLine[1] - k4*rightLine[0];

    // 四条直线交点
    Point p1; // 左上角
    p1.x = static_cast((c1 - c3) / (k3 - k1));
    p1.y = static_cast(k1*p1.x + c1);
    Point p2; // 右上角
    p2.x = static_cast((c1 - c4) / (k4 - k1));
    p2.y = static_cast(k1*p2.x + c1);
    Point p3; // 左下角
    p3.x = static_cast((c2 - c3) / (k3 - k2));
    p3.y = static_cast(k2*p3.x + c2);
    Point p4; // 右下角
    p4.x = static_cast((c2 - c4) / (k4 - k2));
    p4.y = static_cast(k2*p4.x + c2);
    cout << "p1(x, y)=" << p1.x << "," << p1.y << endl;
    cout << "p2(x, y)=" << p2.x << "," << p2.y << endl;
    cout << "p3(x, y)=" << p3.x << "," << p3.y << endl;
    cout << "p4(x, y)=" << p4.x << "," << p4.y << endl;

    // 显示四个点坐标
    circle(linesImage, p1, 2, Scalar(255, 0, 0), 2, 8, 0);
    circle(linesImage, p2, 2, Scalar(255, 0, 0), 2, 8, 0);
    circle(linesImage, p3, 2, Scalar(255, 0, 0), 2, 8, 0);
    circle(linesImage, p4, 2, Scalar(255, 0, 0), 2, 8, 0);
    line(linesImage, Point(topLine[0], topLine[1]), Point(topLine[2], topLine[3]), Scalar(0, 255, 0), 2, 8, 0);
    imshow("four corners", linesImage);

    // 透视变换
    vector src_corners(4); // 原来的点
    src_corners[0] = p1;
    src_corners[1] = p2;
    src_corners[2] = p3;
    src_corners[3] = p4;

    vector dst_corners(4); // 目标点位
    dst_corners[0] = Point(0,0);
    dst_corners[1] = Point(width, 0);
    dst_corners[2] = Point(0, height);
    dst_corners[3] = Point(width , height);

    // 获取变换矩阵
    Mat reslutImg;
    Mat warpmatrix = getPerspectiveTransform(src_corners, dst_corners);
    warpPerspective(src, reslutImg, warpmatrix, reslutImg.size(), INTER_LINEAR);
    imshow(output_image, reslutImg);


    waitKey(0);
    return 0;
}

二值化

C++ opencv-3.4.1 复杂的图像矫正方法_第2张图片

形态学操作

C++ opencv-3.4.1 复杂的图像矫正方法_第3张图片

轮廓查找

C++ opencv-3.4.1 复杂的图像矫正方法_第4张图片

霍夫变换

C++ opencv-3.4.1 复杂的图像矫正方法_第5张图片

求直线交点

C++ opencv-3.4.1 复杂的图像矫正方法_第6张图片

透视变换

C++ opencv-3.4.1 复杂的图像矫正方法_第7张图片

另种比较简单的方法

如图:


C++ opencv-3.4.1 复杂的图像矫正方法_第8张图片

操作和以前的方法类似,处理比较简单。

  1. 二值化
  2. 使用canny进行轮廓检测,把轮廓进行显著化
  3. 查找轮廓,得到旋转的角度
  4. 进行仿射变换
#include 
#include 
#include 

using namespace cv;
using namespace std;
Mat src, dst, gray_src;
char input_image[] = "input image";
char output_image[] = "output image";

int threshold_value = 100;
int threshold_max = 255;
void FindROI(int, void*);
void Check_Skew(int, void *);
int main(int argc, char ** argv){

    src = imread("case12.jpg");
    if (src.empty()){
        printf("colud not load image ..\n");
        return -1;
    }

    namedWindow(input_image, CV_WINDOW_AUTOSIZE);
    namedWindow(output_image, CV_WINDOW_AUTOSIZE);
    imshow(input_image, src);

    createTrackbar("Threshold", output_image, &threshold_value, threshold_max, Check_Skew);
    Check_Skew(0, 0);


    waitKey(0);
    return 0;
}


void Check_Skew(int, void *){
    Mat  canny_output;
    cvtColor(src, gray_src, COLOR_BGR2GRAY);
    Canny(gray_src, canny_output, threshold_value, threshold_value * 2, 3, false);
    
    vector> contours;
    vector hireachy;
    findContours(canny_output, contours, hireachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
    Mat drawImg = Mat::zeros(src.size(), CV_8UC3);

    float maxw = 0;
    float maxh = 0;
    double degree = 0;
    for (size_t t = 0; t < contours.size(); t++){
        RotatedRect minRect = minAreaRect(contours[t]);
        degree = abs(minRect.angle);
        if (degree > 0){
            maxw = max(maxw, minRect.size.width);
            maxh = max(maxh, minRect.size.height);
        }
    }
    
    RNG rng(12345);
    for (size_t t = 0; t < contours.size(); t++){
        RotatedRect minRect = minAreaRect(contours[t]);
        if (maxw == minRect.size.width && maxh == minRect.size.height){
            degree = minRect.angle;
            Point2f pts[4];
            minRect.points(pts);
            Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
            for (int i = 0; i < 4; i++){
                line(drawImg, pts[i], pts[(i + 1) % 4], color, 2, 8, 0);
            }
            }
    }

    imshow("roi", drawImg);


    printf("max contours width: %f\n", maxw);
    printf("max contours heigh: %f\n", maxh);
    printf("max contours angle: %f\n", degree);

    Point2f center(src.cols / 2, src.rows / 2);
    Mat rotm = getRotationMatrix2D(center, degree, 1.0);
    
    warpAffine(src, dst, rotm, src.size(), INTER_LINEAR, 0, Scalar(255, 255, 255));
    imshow(output_image, dst);
}

轮廓查找

C++ opencv-3.4.1 复杂的图像矫正方法_第9张图片

矫正

C++ opencv-3.4.1 复杂的图像矫正方法_第10张图片

你可能感兴趣的:(C++ opencv-3.4.1 复杂的图像矫正方法)