- mysql升级到8.0.17_MySQL5.7升级到8.0过程详解
不就是输
mysql升级到8.0.17
前言:不知不觉,MySQL8.0已经发布好多个GA小版本了。目前互联网上也有很多关于MySQL8.0的内容了,MySQL8.0版本基本已到稳定期,相信很多小伙伴已经在接触8.0了。本篇文章主要介绍从5.7升级到8.0版本的过程及注意事项,有想做版本升级的小伙伴可以参考下。1.升级前准备及注意事项首先,我们要大概了解下MySQL5.7和8.0有哪些不同,参考官方文档和其他网友文章,概括总结出MySQ
- 【卡车无人机】遗传算法GA求解卡车联合无人机配送路径规划【含Matlab源码 XYDG001期】
Matlab领域
Matlab路径规划(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(高阶版)②付费专栏Matlab路径规划(进阶版)③付费专栏Matlab路径规划(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- Jetson Agx Orin平台JP6.0-r36.3版本修复了vi模式下的原始图像损坏(线条伪影)
free-xx
NvidiaJetson平台相机开发驱动开发jetsonorincamera
1.问题描述这是JP-6.0GA/l4t-r36.3.0的一个已知问题通过vi模式捕获的图像会导致异常线条参考下面的快照来演示这些线伪影这个问题只能通过VI模式进行修复,不应该通过LibArgus看到。此外,这是由于内存问题。由于upstream已经将属性名称更改为“dma-noncoherent”。如果设备是一致的,内核将跳过CPU/设备同步。2.修复方法这里有两个修复方法来解决这个问题。(1)
- 设置GaussDB实例安全组规则
如清风一般
gaussdb安全数据库
设置GaussDB实例安全组规则操作场景安全组是一个逻辑上的分组,为同一个虚拟私有云内具有相同安全保护需求,并相互信任的弹性云服务器和GaussDB实例提供访问策略。如果账号已经申请创建时支持不指定安全组的白名单,则不需要执行本章节,而且在实例详情页也不会有内网安全组信息。为了保障数据库的安全性和稳定性,在使用GaussDB实例之前,您需要设置安全组,开通需访问数据库的IP地址和端口。内网连接Ga
- 【学习笔记】李宏毅2021春机器学习课程第2.3节:Adaptive Learning Rate
Harryline-lx
机器学习机器学习人工智能深度学习
文章目录Trainingstuck≠SmallGradientDifferentparametersneedsdifferentlearningrateRootmeansquareAdagradRMSPropAdamLearningRateSchedulingTrainingstuck≠SmallGradient首先要明确的一点是,目前当我们用gradientdescend来做optimizati
- 1.5 企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能promptchatgptlangchaingpt
企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径一、技术演进金字塔:四阶技术如何构建AI新范式▲预训练│(万亿参数基建)├─大模型微调│(领域知识注入)├─AI智能体│(任务自动化)└─提示工程(零样本交互)1.1技术层级关系与适用场景技术阶段技术门槛算力需求企业应用成熟度典型工具链提示工程★☆☆☆☆CPU即可90%+企业已部署LangChain、AutoGPT
- X-R1 项目代码文件的详细剖析并精读rewards、grpo、x_grpo_trainer(src/x_r1)
仙人掌_lz
人工智能人工智能深度学习学习
这个项目名为[X-R1](https://github.com/dhcode-cpp/X-R1),是一个基于强化学习的训练框架,旨在构建一个易于使用、低成本的训练框架,以加速ScalingPost-Training的开发。以下是对该项目的详细解释:项目结构项目的主要目录结构如下:X-R1/├──.gitignore├──LICENSE├──Makefile├──README.md├──requir
- 【GA MTSP】基于matlab遗传算法求解多旅行商问题(目标函数:最短距离 单起点多终点)【含Matlab源码 4354期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码。个人主页:Matlab研究室代码获取方式:扫描文章底部QQ二维码⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(研究室版
- DeepSeek-V2 论文解读:混合专家架构的新突破
进一步有进一步的欢喜
DeepSeek-V2大模型MoE混合专家架构
论文链接:DeepSeek-V2:AStrong,Economical,andEfficientMixture-of-ExpertsLanguageModel目录一、引言二、模型架构(一)多头部潜在注意力(MLA):重塑推理效率(二)DeepSeekMoE:经济高效的训练架构三、预训练(Pre-Training):夯实模型基础(一)实验设置(二)评估四、对齐(Alignment):优化模型表现(一
- Python实现基因遗传算法
闲人编程
pythonpython开发语言基因遗传算法
目录基因遗传算法简介基因遗传算法的基本步骤Python实现基因遗传算法场景:优化二次函数Python代码实现代码解释场景说明总结基因遗传算法简介基因遗传算法(GeneticAlgorithm,GA)是一种基于自然选择和遗传学原理的优化算法,适用于求解复杂的组合优化问题。它通过模拟生物进化过程,如选择、交叉、变异等,逐步优化种群中的个体,最终逼近全局最优解。基因遗传算法的基本步骤初始化种群:随机生成
- MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
kuan_li_lyg
MATLAB机器人与控制系统应用matlab算法人工智能遗传算法GA旅行商问题
系列文章目录文章目录系列文章目录前言一、旅行商问题(TSP)二、MATLAB步骤1.引入库2.为自定义数据类型定制遗传算法3.旅行商问题所需函数4.设置遗传算法选项前言这个例子展示了如何使用遗传算法来最小化使用自定义数据类型的函数。对遗传算法进行了定制化处理以解决旅行商问题。一、旅行商问题(TSP)旅行推销员问题(英语:Travellingsalesmanproblem,TSP)是这样一个问题:给
- Nacos Python SDK 强势来袭,动态管理大模型 Prompt!
云原生
作者:聪言亲爱的开发者们:我们激动地宣布,NacosPythonSDK——nacos-sdk-python1.0.0稳定版正式发布啦!Nacos从0.8.0版本开始就一直参与Python生态建设,努力作为Python生态中分布式微服务发现和配置管理的解决方案一直往前演进。目前随着AI领域的发展,Nacos社区的Python开发者用户越来越多,因此这次我们迭代了Python的GA稳定版本,对不少历史
- Nacos Python SDK 强势来袭,动态管理大模型 Prompt!
云原生
作者:聪言亲爱的开发者们:我们激动地宣布,NacosPythonSDK——nacos-sdk-python1.0.0稳定版正式发布啦!Nacos从0.8.0版本开始就一直参与Python生态建设,努力作为Python生态中分布式微服务发现和配置管理的解决方案一直往前演进。目前随着AI领域的发展,Nacos社区的Python开发者用户越来越多,因此这次我们迭代了Python的GA稳定版本,对不少历史
- Gateway网关鉴权
小码农叔叔
springboot相关网关与限流术Gateway网关鉴权
前言说起鉴权,大多数会立马想到各种鉴权的技术,比如过滤器、拦截器、安全治理框架shiro、spring-security等等,它们在不同的业务场景下发挥的作用各不相同,但是总体来说都有一个相似的作用,就是作为后端服务的安全防护层而在微服务架构越加流行的时代,网关作为一个独立的组件从众多的服务中拆分出来作为架构的一部分,承载着重大的作用,比如安全拦截,动态路由,负载均衡等,这一点之前的zuul和ga
- LS-SDMTSP:遗传算法(GA)求解大规模单仓库多旅行商问题(LS-SDMTSP),MATLAB代码
IT猿手
TSPMATLABmatlablinux开发语言智能优化算法多目标算法
一、问题定义大规模单仓库多旅行商问题(Large-ScaleSingle-DepotMulti-TravelingSalesmanProblem,简称LS-SDMTSP)是组合优化领域中极具挑战性的经典问题。假设存在一个单一仓库,它既是所有旅行商的出发地,也是最终的返回地。同时,有数量众多的客户节点散布在地理空间中,并且有一支由多个旅行商组成的队伍。每个旅行商需要从仓库出发,遍历一定数量的客户节点
- AWS全服务历史年表:发布日期、GA和服务概述一览(二)
因_果_律
aws云计算大数据
创建AWS全服务历史年表的方法从下列资料进行整理:●What'sNewwithAWS●AWSNewsBlog●AWSDocumentation2018年之前的部分可以参考上一篇博文AWS全服务历史年表:发布日期、GA和服务概述一览(一)统计范围2004~2023/11/宣布日期GA日(一般提供開始日)服务名分类概要2018/11/292018/11/29AWSWell-ArchitectedToo
- 深度学习模型格式解析:PyTorch、AWQ 和 GPTQ
gs80140
基础知识科谱AI深度学习pytorch人工智能
在深度学习领域,模型的存储和加载方式直接影响其运行效率、适用场景以及部署方式。PyTorch、AWQ(Activation-awareWeightQuantization)和GPTQ(GeneralizedPost-TrainingQuantization)是目前较为流行的三种模型格式,每种格式都有其独特的特性和应用场景。1.PyTorch模型格式概述PyTorch是一个广泛使用的深度学习框架,其
- Macos编译openjdk因berkeley-db版本问题失败解决办法
aerror
macos
brewinstallopenjdk最后编译失败,报错如下:*Fortargetsupport_native_jdk.hotspot.agent_libsaproc_symtab.o:/private/tmp/openjdk-20250203-10040-wpec6/jdk23u-jdk-23.0.2-ga/src/jdk.hotspot.agent/macosx/native/libsaproc
- Android Room 使用
francisHuang
android学习androidRoom数据库
官网介绍:https://developer.android.google.cn/training/data-storage/roomRoom是在SQLite上提供了一个抽象层,以便在充分利用SQLite的强大功能的同时,能够流畅地访问数据库。Room包含3个重要部分:数据库:包含数据库持有者,并作为应用已保留的持久关系型数据的底层连接的主要接入点。Entity:表示数据库中的表。DAO:包含用于
- Spring Boot 中文参考指南
阿提说说
SpringBoot3.x精讲springbootjavaspring
SpringBoot版本2.7.8原文:https://docs.spring.io/spring-boot/docs/2.7.8/reference/htmlsingle/—笔者注:SpringBoot3.x第一个GA版本已于22年底发布,2.7.8是2.x的最后一个GA版本,我觉得一段时间内依然会以2.x为主,该文大部分通过软件翻译,再加上自己的经验理解进行整理和注释,目的用来作为手册查找和知
- 大模型算法到底值不值得入行?
和老莫一起学AI
算法深度学习机器学习人工智能产品经理学习转行
先讨论算法相关的方向,分成三部分吧pretrain、post-training和更偏应用的工作pretrain的机会应该是越来越少了,还能在这个方向做的应该都是很强的团队了,早期买了几百张卡就来混事那种团队基本都G了(比如我们)已经不敢评了,只是觉得很强。post-training分成两种,一种是以提升通用能力为目的的,比如openai、国内qwen专门做这个的团队。这种也不敢评,强就完了。不过某
- 遗传算法GA特征选择Python
明天早下班YEAH
python笔记其他
一、遗传算法GA特征选择——代码importpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.ensembleimportRandomForestRegressorfromsklearn.metricsimportmean_squared_error,r2_scorefromg
- spring spring-boot spring-cloud发布以及适配
zlpzlpzyd
springspringjava数据库
https://spring.io/blog/2024/10/01/from-spring-framework-6-2-to-7-0看了spring的官网,提到2025年spring会跟随jdk25LTS发布后,接着发布SpringFramework7.0GA,与之对应spring系列的组件版本情况如下。SpringFramework版本SpringBoot版本SpringCloud版本7.0GA
- CVPR 2024 无人机/遥感/卫星图像方向总汇(航空图像和交叉视角定位)
点云SLAM
图形图像处理深度学习计算机视觉遥感卫星图像交叉视觉定位CVPR
1、UAV、RemoteSensing、SatelliteImage(无人机/遥感/卫星图像)UnleashingUnlabeledData:AParadigmforCross-ViewGeo-Localization⭐codeRethinkingTransformersPre-trainingforMulti-SpectralSatelliteImagery⭐codeAerialLifting:
- 更安全、更丰富 、更兼容 Anolis OS 23.2 版本重磅上线
操作系统开源
经过数月的精心开发与严格的测试流程,龙蜥社区AnolisOS23.2GA版本于2025年伊始首次向广大社区用户发布。该版本是一款基于开源生态发展合作倡议,面向上游原生社区独立选型,持续演进并保障兼容性和稳定性的Linux发行版。本次发布延续了龙蜥社区一贯坚持的高质量、高稳定性的软件包选型原则,在工具链生态、平台支持和安全特性层面有了更多的扩展。该版本将给对安全层面有更多需求的海光和龙芯平台用户提供
- DiNO (Knowledge Distillation with No Labels)(二)
CL.LIANG
pytorch图像处理深度学习
2021年Facebookresearch团队发布DiNO模型后,于2023年又发布了DiNOv2。本文是对DiNOv2论文的学习总结,更多详细细节可以参考论文原稿。论文的创新点Abstract:Therecentbreakthroughsinnaturallanguageprocessingformodelpretrainingonlargequantitiesofdatahaveopenedt
- 【图像复原】论文精读:Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能计算机视觉图像修复图像处理论文阅读论文笔记
第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)文章目录前言Abstract1.Introduction2.RelatedWork3.Method3.1.ModelScalingUp3.2.ScalingUpTrainingData3
- QAT与PTQ模型量化方法的区别
old_power
计算机视觉模型量化深度学习计算机视觉
QAT(QuantizationAwareTraining)和PTQ(PostTrainingQuantization)是两种常见的模型量化方法,用于减少深度学习模型的计算和存储开销,同时尽量保持模型的性能。1.QAT(QuantizationAwareTraining)定义:QAT是在模型训练过程中引入量化操作,使模型在训练时就能感知到量化带来的影响,从而更好地适应量化后的精度损失。流程:在训练
- DeepSpeed 常见问题解决方案
申晓容Lucille
DeepSpeed常见问题解决方案DeepSpeedDeepSpeedisadeeplearningoptimizationlibrarythatmakesdistributedtrainingandinferenceeasy,efficient,andeffective.项目地址:https://gitcode.com/gh_mirrors/de/DeepSpeed1.项目基础介绍和主要编程语言
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
2401_89759264
人工智能前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =