如何构建一个简单的神经网络
最近报名了Udacity的深度学习基石,这是介绍了第二部分神经网络入门,第一篇是线性回归背后的数学.
本文notebook的地址是:https://github.com/zhuanxuhit/nd101/blob/master/1.Intro_to_Deep_Learning/2.How_to_Make_a_Neural_Network/python-network.ipynb
1. 模型阐述
假设我们有下面的一组数据
输入1 | 输入2 | 输入3 | 输出 |
---|---|---|---|
0 | 0 | 1 | 0 |
1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 |
对于上面的表格,我们可以找出其中的一个规律是:
输入的第一列和输出相同
那对于输入有3列,每列有0和1两个值,那可能的排列有\(2^3=8\)种,但是此处只有4种,那么在有限的数据情况下,我们应该怎么预测其他结果呢?
这个时候神经网络就大显身手了!
看代码:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
from numpy import exp, array, random, dot
class NeuralNetwork():
def __init__(self):
# Seed the random number generator, so it generates the same numbers
# every time the program runs.
random.seed(1)
# We model a single neuron, with 3 input connections and 1 output connection.
# We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1
# and mean 0.
self.synaptic_weights = 2 * random.random((3, 1)) - 1
self.sigmoid_derivative = self.__sigmoid_derivative
# The Sigmoid function, which describes an S shaped curve.
# We pass the weighted sum of the inputs through this function to
# normalise them between 0 and 1.
def __sigmoid(self, x):
return 1 / (1 + exp(-x))
# The derivative of the Sigmoid function.
# This is the gradient of the Sigmoid curve.
# It indicates how confident we are about the existing weight.
def __sigmoid_derivative(self, x):
return x * (1 - x)
# We train the neural network through a process of trial and error.
# Adjusting the synaptic weights each time.
def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iteration in range(number_of_training_iterations):
# Pass the training set through our neural network (a single neuron).
output = self.think(training_set_inputs)
# Calculate the error (The difference between the desired output
# and the predicted output).
error = training_set_outputs - output
# Multiply the error by the input and again by the gradient of the Sigmoid curve.
# This means less confident weights are adjusted more.
# This means inputs, which are zero, do not cause changes to the weights.
adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))
# Adjust the weights.
self.synaptic_weights += adjustment
# The neural network thinks.
def think(self, inputs):
# Pass inputs through our neural network (our single neuron).
return self.__sigmoid(dot(inputs, self.synaptic_weights))
#Intialise a single neuron neural network.
neural_network = NeuralNetwork()
print("Random starting synaptic weights: ")
print(neural_network.synaptic_weights)
# The training set. We have 4 examples, each consisting of 3 input values
# and 1 output value.
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
# Train the neural network using a training set.
# Do it 10,000 times and make small adjustments each time.
neural_network.train(training_set_inputs, training_set_outputs, 10000)
print("New synaptic weights after training: ")
print(neural_network.synaptic_weights)
# Test the neural network with a new situation.
print("Considering new situation [1, 0, 0] -> ?: ")
print(neural_network.think(array([1, 0, 0])))
Random starting synaptic weights:
[[-0.16595599]
[ 0.44064899]
[-0.99977125]]
New synaptic weights after training:
[[ 9.67299303]
[-0.2078435 ]
[-4.62963669]]
Considering new situation [1, 0, 0] -> ?:
[ 0.99993704]
以上代码来自:https://github.com/llSourcell/Make_a_neural_network
现在我们来分析下具体的过程:
第一个我们需要注意的是sigmoid function,其图如下:
import matplotlib.pyplot as plt
import numpy as np
def sigmoid(x):
a = []
for item in x:
a.append(1/(1+np.exp(-item)))
return a
x = np.arange(-6., 6., 0.2)
sig = sigmoid(x)
plt.plot(x,sig)
plt.grid()
plt.show()
我们可以看到sigmoid函数将输入转换到了0-1之间的值,而sigmoid函数的导数是:
def __sigmoid_derivative(self, y):
return y * (1 - y)
其具体的含义看图:
def sigmoid_derivative(x):
y = 1/(1+np.exp(-x))
return y * (1-y)
def derivative(point):
dx = np.arange(-0.5,0.5,0.1)
slope = sigmoid_derivative(point)
return [point+dx,slope * dx + 1/(1+np.exp(-point))]
x = np.arange(-6., 6., 0.1)
sig = sigmoid(x)
point1 = 2
slope1 = sigmoid_derivative(point1)
plt.plot(x,sig)
x1,y1 = derivative(point1)
plt.plot(x1,y1,linewidth=5)
x2,y2 = derivative(0)
plt.plot(x2,y2,linewidth=5)
x3,y3 = derivative(-4)
plt.plot(x3,y3,linewidth=5)
plt.grid()
plt.show()
现在我们来根据图解释下实际的含义:
- 首先输出是0到1之间的值,我们可以将其认为是一个可信度,0不可信,1完全可信
- 当输入是0的时候,输出是0.5,什么意思呢?意思是输出模棱两可
基于以上两点,我们来看下上面函数的中的一个计算过程:
adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))
这个调整值的含义我们就知道了,当输出接近0和1时候,我们已经预测的挺准了,此时调整就基本接近于0了
而当输出为0.5左右的时候,说明预测完全是瞎猜,我们就需要快速调整,因此此时的导数也是最大的,即上图的绿色曲线,其斜度也是最大的
基于上面的一个讨论,我们还可以有下面的一个结论:
- 当输入是1,输出是0,我们需要不断减小 weight 的值,这样子输出才会是很小,sigmoid输出才会是0
- 当输入是1,输出是1,我们需要不断增大 weight 的值,这样子输出才会是很大,sigmoid输出才会是1
这时候我们再来看下最初的数据,
输入1 | 输入2 | 输入3 | 输出 |
---|---|---|---|
0 | 0 | 1 | 0 |
1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 |
我们可以断定输入1的weight值会变大,而输入2,3的weight值会变小。
根据之前训练出来的结果也支持了我们的推断:
Random starting synaptic weights:
[[-0.16595599]
[ 0.44064899]
[-0.99977125]]
New synaptic weights after training:
[[ 9.67299303]
[-0.2078435 ]
[-4.62963669]]
2. 扩展
我们来将上面的问题稍微复杂下,假设我们的输入如下:
输入1 | 输入2 | 输入3 | 输出 |
---|---|---|---|
0 | 0 | 1 | 0 |
0【此处改变】 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1【此处改变】 | 1 | 1 | 0 |
此处我们只是改变一个值,此时我们再次训练呢?
我们观察上面的数据,好像很难再像最初一样直接观察出 输出1 == 输出 的这种简单的关系了,我们要稍微深入的观察下了
- 首先输入3都是1,看起来对输出没什么影响
- 接着观察输入1和输入2,似乎只要两者不同,输出就是1
基于上面的观察,我们似乎找不到像输出1 == 输出这种 one-to-one 的关系了,我们有什么办法呢?
这个时候,就需要引入 hidden layer,如下表格:
输入1 | 输入2 | 输入3 | w1 | w2 | w3 | 中间输出 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 0.1 | 0.2 | 0 | 0 |
0 | 1 | 1 | 0.2 | 0.6 | 0.4 | 1 |
1 | 0 | 1 | 0.3 | 0.2 | 0.7 | 1 |
1 | 1 | 1 | 0.1 | 0.5 | -0.6 | 0 |
此时我们得到中的中间输入和最后输出就还是原来的一个 输出1 == 输出 关系了。
上面介绍的这种方法就是深度学习的最简单的形式
深度学习就是通过增加层次,不断去放大输入和输出之间的关系,到最后,我们可以从复杂的初看起来毫不相干的数据中,找到一个能一眼就看出来的关系
此处我们还是用之前的网络来训练
#Intialise a single neuron neural network.
neural_network = NeuralNetwork()
print("Random starting synaptic weights: ")
print(neural_network.synaptic_weights)
# The training set. We have 4 examples, each consisting of 3 input values
# and 1 output value.
training_set_inputs = array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
# Train the neural network using a training set.
# Do it 10,000 times and make small adjustments each time.
neural_network.train(training_set_inputs, training_set_outputs, 10000)
print("New synaptic weights after training: ")
print(neural_network.synaptic_weights)
train_loss = MSE(neural_network.think(training_set_inputs), training_set_outputs)
print("Training loss: " + str(train_loss)[:5])
# Test the neural network with a new situation.
print("Considering new situation [1, 0, 0] -> ?: ")
print(neural_network.think(array([1, 0, 0])))
print("Debug...")
output = neural_network.think(training_set_inputs)
print(output)
# print(dot(training_set_inputs, neural_network.synaptic_weights))
error = training_set_outputs - output
# print(error) error 是0.5
print(error * neural_network.sigmoid_derivative(output))
print(training_set_inputs.T)
adjustment = dot(training_set_inputs.T, error * neural_network.sigmoid_derivative(output))
# print(adjustment)
Random starting synaptic weights:
[[-0.16595599]
[ 0.44064899]
[-0.99977125]]
New synaptic weights after training:
[[ 2.08166817e-16]
[ 2.22044605e-16]
[ -3.05311332e-16]]
Training loss: 0.25
Considering new situation [1, 0, 0] -> ?:
[ 0.5]
Debug...
[[ 0.5]
[ 0.5]
[ 0.5]
[ 0.5]]
[[-0.125]
[ 0.125]
[ 0.125]
[-0.125]]
[[0 0 1 1]
[0 1 0 1]
[1 1 1 1]]
此处我们训练可以发现,此处的误差基本就是0.25,然后预测基本不可信。0.5什么鬼!
由数据可以看到此处的weight都已经非常非常小了,然后斜率是0.5,
由上面打印出来的数据,已经达到平衡,adjustment都是0了,不会再次调整了。
由此可以看出,简单的一层网络已经不能再精准的预测了,只能增加复杂度了。
下面我们来加一层再来看下:
class TwoLayerNeuralNetwork(object):
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
np.random.seed(1)
# Initialize weights
self.weights_0_1 = np.random.normal(0.0, self.hidden_nodes**-0.5,
(self.input_nodes, self.hidden_nodes)) # n * 2
self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5,
(self.hidden_nodes, self.output_nodes)) # 2 * 1
self.lr = learning_rate
#### Set this to your implemented sigmoid function ####
# Activation function is the sigmoid function
self.activation_function = self.__sigmoid
def __sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def __sigmoid_derivative(self, x):
return x * (1 - x)
def train(self, inputs_list, targets_list):
# Convert inputs list to 2d array
inputs = np.array(inputs_list,ndmin=2) # 1 * n
layer_0 = inputs
targets = np.array(targets_list,ndmin=2) # 1 * 1
#### Implement the forward pass here ####
### Forward pass ###
layer_1 = self.activation_function(layer_0.dot(self.weights_0_1)) # 1 * 2
layer_2 = self.activation_function(layer_1.dot(self.weights_1_2)) # 1 * 1
#### Implement the backward pass here ####
### Backward pass ###
# TODO: Output error
layer_2_error = targets - layer_2
layer_2_delta = layer_2_error * self.__sigmoid_derivative(layer_2)# y = x so f'(h) = 1
layer_1_error = layer_2_delta.dot(self.weights_1_2.T)
layer_1_delta = layer_1_error * self.__sigmoid_derivative(layer_1)
# TODO: Update the weights
self.weights_1_2 += self.lr * layer_1.T.dot(layer_2_delta) # update hidden-to-output weights with gradient descent step
self.weights_0_1 += self.lr * layer_0.T.dot(layer_1_delta) # update input-to-hidden weights with gradient descent step
def run(self, inputs_list):
# Run a forward pass through the network
inputs = np.array(inputs_list,ndmin=2)
#### Implement the forward pass here ####
layer_1 = self.activation_function(inputs.dot(self.weights_0_1)) # 1 * 2
layer_2 = self.activation_function(layer_1.dot(self.weights_1_2)) # 1 * 1
return layer_2
def MSE(y, Y):
return np.mean((y-Y)**2)
# import sys
training_set_inputs = array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
### Set the hyperparameters here ###
epochs = 20000
learning_rate = 0.1
hidden_nodes = 4
output_nodes = 1
N_i = 3
network = TwoLayerNeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate)
losses = {'train':[]}
for e in range(epochs):
# Go through a random batch of 128 records from the training data set
for record, target in zip(training_set_inputs,
training_set_outputs):
# print(target)
network.train(record, target)
train_loss = MSE(network.run(training_set_inputs), training_set_outputs)
sys.stdout.write("\rProgress: " + str(100 * e/float(epochs))[:4] \
+ "% ... Training loss: " + str(train_loss)[:7])
losses['train'].append(train_loss)
print(" ")
print("After train,layer_0_1: ")
print(network.weights_0_1)
print("After train,layer_1_2: ")
print(network.weights_1_2)
# Test the neural network with a new situation.
print("Considering new situation [1, 0, 0] -> ?: ")
print(network.run(array([1, 0, 0])))
Progress: 99.9% ... Training loss: 0.00078
After train,layer_0_1:
[[ 4.4375838 -3.87815184 1.74047905 -5.12726884]
[ 4.43114847 -3.87644617 1.71905492 -5.10688387]
[-6.80858063 0.76685389 1.89614363 1.61202043]]
After train,layer_1_2:
[[-9.21973137]
[-3.84985864]
[ 4.75257888]
[-6.36994226]]
Considering new situation [1, 0, 0] -> ?:
[[ 0.00557239]]
layer_1=network.activation_function(training_set_inputs.dot(network.weights_0_1))
print(layer_1)
layer_2 = network.activation_function(layer_1.dot(network.weights_1_2))
print(layer_2)
[[ 2.20482250e-01 9.33639853e-01 6.30402293e-01 6.24775766e-02]
[ 1.77659862e-02 9.99702482e-01 8.64290928e-01 9.26611880e-01]
[ 6.94975743e-01 8.90040645e-02 8.51261229e-01 2.06917379e-04]
[ 1.27171786e-01 9.58904341e-01 9.55296949e-01 3.77322214e-02]]
[[ 0.02374213]
[ 0.97285992]
[ 0.97468116]
[ 0.02714965]]
最后总结下:我们发现在扩展中,我们只是简单的改变了两个输入值,此时再次用一层神经网络已经难以预测出正确的数据了,此时我们只能通过将神经网络变深,这个过程其实就是再去深度挖掘数据之间关系的过程,此时我们的2层神经网络相比较1层就好多了。
以上内容参考了:A Neural Network in 11 lines of Python (Part 1)
参考代码:https://github.com/llSourcell/Make_a_neural_network
参考视频:https://www.youtube.com/watch?v=p69khggr1Jo