Java多线系列文章是Java多线程的详解介绍,对多线程还不熟悉的同学可以先去看一下我的这篇博客Java基础系列3:多线程超详细总结,这篇博客从宏观层面介绍了多线程的整体概况,接下来的几篇文章是对多线程的深入剖析。
Lock锁
1、简介
1、从Java5开始,Java提供了一种功能更强大的线程同步机制——通过显式定义同步锁对象来实现同步,在这种机制下,同步锁由Lock对象充当。
2、Lock 提供了比synchronized方法和synchronized代码块更广泛的锁定操作,Lock允许实现更灵活的结构,可以具有差别很大的属性,并且支持多个相关的Condition对象。
3、Lock是控制多个线程对共享资源进行访问的工具。通常,锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象。
4、某些锁可能允许对共享资源并发访问,如ReadWriteLock(读写锁),Lock、ReadWriteLock是Java5提供的两个根接口,并为Lock 提供了ReentrantLock(可重入锁)实现类,为ReadWriteLock提供了ReentrantReadWriteLock 实现类。
5、Java8新增了新型的StampedLock类,在大多数场景中它可以替代传统的ReentrantReadWriteLock。ReentrantReadWriteLock 为读写操作提供了三种锁模式:Writing、ReadingOptimistic、Reading。
2、Lock锁使用
class X{ //定义锁对象 private final ReentrantLock lock=new ReentrantLock(); //定义需要保证线程安全的方法 public void m() { //加锁 lock.lock(); try { //需要保证线程安全的代码 } finally { lock.unlock(); } } }
ReentranLock
1、简介
在Java多线程中,可以使用synchronized关键字来实现线程之间同步互斥,但在JDK1.5中新增加了ReentrantLock类也能达到同样的效果,并且在扩展功能上也更加强大,比如具有嗅探锁定、多路分支通知等功能,而且在使用上也比synchronized更加的灵活。
2、使用ReentranLock实现同步
既然ReentrantLock类在功能上相比synchronized更多,那么就以一个初步的程序示例来介绍一下ReentrantLock类的使用。
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyService{ private Lock lock=new ReentrantLock(); public void testMethod() { lock.lock(); for(int i=0;i<5;i++) { System.out.println("ThreadName= "+Thread.currentThread().getName()+(" "+(i+1))); } lock.unlock(); } } class MyThread extends Thread{ private MyService service; public MyThread(MyService service) { this.service=service; } @Override public void run() { service.testMethod(); } } public class LockTest { public static void main(String[] args) { MyService service=new MyService(); MyThread t1=new MyThread(service); MyThread t2=new MyThread(service); MyThread t3=new MyThread(service); MyThread t4=new MyThread(service); MyThread t5=new MyThread(service); t1.start(); t2.start(); t3.start(); t4.start(); t5.start(); } }
运行结果:
ThreadName= Thread-2 1 ThreadName= Thread-2 2 ThreadName= Thread-2 3 ThreadName= Thread-2 4 ThreadName= Thread-2 5 ThreadName= Thread-0 1 ThreadName= Thread-0 2 ThreadName= Thread-0 3 ThreadName= Thread-0 4 ThreadName= Thread-0 5 ThreadName= Thread-3 1 ThreadName= Thread-3 2 ThreadName= Thread-3 3 ThreadName= Thread-3 4 ThreadName= Thread-3 5 ThreadName= Thread-4 1 ThreadName= Thread-4 2 ThreadName= Thread-4 3 ThreadName= Thread-4 4 ThreadName= Thread-4 5 ThreadName= Thread-1 1 ThreadName= Thread-1 2 ThreadName= Thread-1 3 ThreadName= Thread-1 4 ThreadName= Thread-1 5
从运行的结果来看,当前线程打印完毕之后将锁进行释放,其他线程才可以继续打印。线程打印的数据是分组打印,因为当前线程已经持有锁,但线程之间打印的顺序是随机的。lock.lock()是对当前线程加锁,当线程执行完毕后调用lock.unlock()释放锁,这时候其他线程可以去获取锁,至于是哪一个线程可以争抢到锁还是看CPU的调度
3、使用Condition实现等待/通知:错误用法与解决
关键字synchronized与wait()和notify()/notifyAll()方法相结合可以实现等待/通知模式,类ReentrantLock也可以实现同样的功能,但需要借助于Condition对象。Condition类是在JDK5中出现的技术,使用它有更好的灵活性,比如可以实现多路通知功能,也就是在一个Lock对象里面可以创建多个Condition(即对象监视器)实例,线程对象可以注册在指定的Condition中,从而可以有选择性地进行线程通知,在调度线程上更加灵活。
在使用notify(O/notifyAll0方法进行通知时,被通知的线程却是由JVM随机选择的。但使用ReentrantLock结合Condition类是可以实现前面介绍过的“选择性通知”,这个功能是非常重要的,而且在Condition类中是默认提供的。
而synchronized就相当于整个Lock对象中只有一个单一的Condition对象,所有的线程都注册在它一个对象的身上。线程开始notifyAll()时,需要通知所有的WAITING线程,没有选择权,会出现相当大的效率问题。
package Thread05; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyService{ private Lock lock=new ReentrantLock(); private Condition condition=lock.newCondition(); public void await() { try { lock.lock(); System.out.println("A"); condition.await(); System.out.println("B"); }catch(InterruptedException e) { e.printStackTrace(); }finally { lock.unlock(); System.out.println("锁释放了"); } } } class MyThread extends Thread{ private MyService service; public MyThread(MyService service) { this.service=service; } @Override public void run() { service.await(); } } public class LockTest { public static void main(String[] args) { MyService service=new MyService(); MyThread thread=new MyThread(service); thread.start(); } }
输出结果:
A
我们可以看到输出结果只有一个A,并没有其他的输出,这是因为调用Condition的await()方法,使当前执行任务的线程进入了等待的状态
注意:在使用Condition方法时要先调用lock.lock()代码获得同步监视器
4、正确使用Condition实现等待/通知
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyService{ private Lock lock=new ReentrantLock(); private Condition condition=lock.newCondition(); public void await() { try { lock.lock(); System.out.println("await时间为"+System.currentTimeMillis()); condition.await(); }catch(InterruptedException e) { e.printStackTrace(); }finally { lock.unlock(); System.out.println("锁释放了"); } } public void signal() { try { lock.lock(); System.out.println("signal时间为"+System.currentTimeMillis()); condition.signal(); }finally { lock.unlock(); } } } class MyThread extends Thread{ private MyService service; public MyThread(MyService service) { this.service=service; } @Override public void run() { service.await(); } } public class LockTest { public static void main(String[] args) throws InterruptedException { MyService service=new MyService(); MyThread thread=new MyThread(service); thread.start(); Thread.sleep(3000); service.signal(); } }
运行结果:
await时间为1575599786039 signal时间为1575599789051 锁释放了
成功实现等待/通知模式
Object类中的wait()方法相当于Condition类中的await()方法,Object类中的wait(long timeout)方法相当于Condition类中的await(long time,TimeUnit unit)方法。Object类中的notify()方法相当于Condition类中的signal()方法。Object类中的notifyAll()方法相当于Condition类中的signalAll()方法。
5、使用多个Condition实现通知所有线程
前面使用一个Condition对象来实现等待/通知模式,其实Condition对象也可以创建多个。那么一个Condition对象和多个Condition对象在使用上有什么区别呢?
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyService{ private Lock lock=new ReentrantLock(); private Condition condition=lock.newCondition(); public void awaitA() { try { lock.lock(); System.out.println("begin awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName()); condition.await(); System.out.println("end awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName()); }catch(InterruptedException e) { e.printStackTrace(); }finally { lock.unlock(); } } public void awaitB() { try { lock.lock(); System.out.println("begin awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName()); condition.await(); System.out.println("end awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName()); }catch(InterruptedException e) { e.printStackTrace(); }finally { lock.unlock(); } } public void signalAll() { try { lock.lock(); System.out.println("signalAll时间为"+System.currentTimeMillis()); condition.signalAll(); }finally { lock.unlock(); } } } class MyThreadA extends Thread{ private MyService service; public MyThreadA(MyService service) { this.service=service; } @Override public void run() { service.awaitA(); } } class MyThreadB extends Thread{ private MyService service; public MyThreadB(MyService service) { this.service=service; } @Override public void run() { service.awaitB(); } } public class LockTest { public static void main(String[] args) throws InterruptedException { MyService service=new MyService(); MyThreadA threadA=new MyThreadA(service); threadA.setName("A"); threadA.start(); MyThreadB threadB=new MyThreadB(service); threadB.setName("B"); threadB.start(); Thread.sleep(3000); service.signalAll(); } }
运行结果:
begin awaitA时间为1575600904529ThreadNameA begin awaitB时间为1575600904545ThreadNameB signalAll时间为1575600907537 end awaitA时间为1575600907537ThreadNameA end awaitB时间为1575600907537ThreadNameB
6、使用多个Condition实现通知部分线程
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyService{ private Lock lock=new ReentrantLock(); private Condition conditionA=lock.newCondition(); private Condition conditionB=lock.newCondition(); public void awaitA() { try { lock.lock(); System.out.println("begin awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName()); conditionA.await(); System.out.println("end awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName()); }catch(InterruptedException e) { e.printStackTrace(); }finally { lock.unlock(); } } public void awaitB() { try { lock.lock(); System.out.println("begin awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName()); conditionB.await(); System.out.println("end awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName()); }catch(InterruptedException e) { e.printStackTrace(); }finally { lock.unlock(); } } //通知A public void signalAll_A() { try { lock.lock(); System.out.println("signalAll_A时间为"+System.currentTimeMillis()+"ThreadName="+Thread.currentThread().getName()); conditionA.signalAll(); }finally { lock.unlock(); } } //通知B public void signalAll_B() { try { lock.lock(); System.out.println("signalAll_A时间为"+System.currentTimeMillis()+"ThreadName="+Thread.currentThread().getName()); conditionA.signalAll(); }finally { lock.unlock(); } } } class MyThreadA extends Thread{ private MyService service; public MyThreadA(MyService service) { this.service=service; } @Override public void run() { service.awaitA(); } } class MyThreadB extends Thread{ private MyService service; public MyThreadB(MyService service) { this.service=service; } @Override public void run() { service.awaitB(); } } public class LockTest { public static void main(String[] args) throws InterruptedException { MyService service=new MyService(); MyThreadA threadA=new MyThreadA(service); threadA.setName("A"); threadA.start(); MyThreadB threadB=new MyThreadB(service); threadB.setName("B"); threadB.start(); Thread.sleep(3000); service.signalAll_A(); } }
运行结果:
begin awaitA时间为1575601785167ThreadNameA begin awaitB时间为1575601785167ThreadNameB signalAll_A时间为1575601788181ThreadName=main end awaitA时间为1575601788181ThreadNameA
上面的代码实现通知部分线程,定义了两个Condition,在测试类中只是唤醒了A,从输出结果可以看出,线程A被唤醒了,线程B依然处于等待状态
7、实现生产者/消费者模式:一个生产者一个消费者
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyService{ private Lock lock=new ReentrantLock(); private Condition condition=lock.newCondition(); private boolean hasValue=false; public void set() { try { lock.lock(); while(hasValue==true) { condition.await(); } System.out.println("打印★"); hasValue=true; condition.signal(); }catch(Exception e) { e.printStackTrace(); }finally { lock.unlock(); } } public void get() { try { lock.lock(); while(hasValue==false) { condition.await(); } System.out.println("打印☆"); hasValue=false; condition.signal(); }catch(Exception e) { e.printStackTrace(); }finally { lock.unlock(); } } } class MyThreadA extends Thread{ private MyService service; public MyThreadA(MyService service) { this.service=service; } @Override public void run() { for(int i=0;i
运行结果:
上面代码实现了生产者消费者的功能,一个生产一个消费,如果hasValue=false相当于生产者没有生产产品,当前没有可消费的产品,所以调用生产者生产,当hasValue=true说明当前有产品还没有被消费,那么生产者应该停止生产,调用消费者消费
8、实现生产者/消费者模式:多个生产者多个消费者
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyService{ private Lock lock=new ReentrantLock(); private Condition condition=lock.newCondition(); private boolean hasValue=false; public void set() { try { lock.lock(); while(hasValue==true) { System.out.println("有可能★★连续"); condition.await(); } System.out.println("打印★"); hasValue=true; condition.signal(); }catch(Exception e) { e.printStackTrace(); }finally { lock.unlock(); } } public void get() { try { lock.lock(); while(hasValue==false) { System.out.println("有可能☆☆连续"); condition.await(); } System.out.println("打印☆"); hasValue=false; condition.signal(); }catch(Exception e) { e.printStackTrace(); }finally { lock.unlock(); } } } class MyThreadA extends Thread{ private MyService service; public MyThreadA(MyService service) { this.service=service; } @Override public void run() { for(int i=0;i
运行结果:
运行程序后出现了假死,因为出现了生产者释放生产者或者消费者释放消费者的情况,那么该如何解决这个问题呢?在使用synchronized实现生产者消费者的时候我们也遇到过这种情况,当时是使用notifyAll()来解决这个问题的,那么现在使用锁我们则用signalAll()方法来解决死锁问题,将上述代码中signal()方法改成signalAll()即可
修改后程序运行结果如下
程序一直正常运行,没有出现死锁情况
9、公平锁和非公平锁
公平与非公平锁:锁Lock分为“公平锁”和“非公平锁”,公平锁表示线程获取锁的顺序是按照线程加锁的顺序来分配的,即先来先得的FIFO先进先出顺序。而非公平锁就是一种获取锁的抢占机制,是随机获得锁的,和公平锁不一样的就是先来的不一定先得到锁,这个方式可能造成某些线程一直拿不到锁,结果也就是不公平的了。
创建公平锁和非公平锁ReentrantLock lock=new ReentrantLock(boolean a),创建锁时如果a为true的话,则创建的是公平锁,如果a为false的话,则创建的是非公平锁
公平锁
import java.util.concurrent.locks.ReentrantLock; class Service{ private ReentrantLock lock; public Service(boolean isFair) { lock=new ReentrantLock(isFair); } public void serviceMethod() { try { lock.lock(); System.out.println("ThreadName="+Thread.currentThread().getName()+"获得锁定"); }catch(Exception e) { e.printStackTrace(); }finally { lock.unlock(); } } } public class LockTest { public static void main(String[] args) throws InterruptedException { final Service service=new Service(true); Runnable runnable=new Runnable() { @Override public void run() { System.out.println("★线程"+Thread.currentThread().getName()+"运行了"); service.serviceMethod(); } }; Thread[] threadArray=new Thread[10]; for(int i=0;i<10;i++) { threadArray[i]=new Thread(runnable); } for(int i=0;i<10;i++) { threadArray[i].start(); } } }
运行结果:
★线程Thread-2运行了 ★线程Thread-3运行了 ★线程Thread-0运行了 ★线程Thread-9运行了 ★线程Thread-4运行了 ★线程Thread-8运行了 ★线程Thread-5运行了 ★线程Thread-1运行了 ★线程Thread-6运行了 ★线程Thread-7运行了 ThreadName=Thread-2获得锁定 ThreadName=Thread-6获得锁定 ThreadName=Thread-1获得锁定 ThreadName=Thread-8获得锁定 ThreadName=Thread-0获得锁定 ThreadName=Thread-7获得锁定 ThreadName=Thread-5获得锁定 ThreadName=Thread-3获得锁定 ThreadName=Thread-9获得锁定 ThreadName=Thread-4获得锁定
结果显示输出基本是呈有序的状态,这就是公平锁的特点
非公平锁
import java.util.concurrent.locks.ReentrantLock; class Service{ private ReentrantLock lock; public Service(boolean isFair) { lock=new ReentrantLock(isFair); } public void serviceMethod() { try { lock.lock(); System.out.println("ThreadName="+Thread.currentThread().getName()+"获得锁定"); }catch(Exception e) { e.printStackTrace(); }finally { lock.unlock(); } } } public class LockTest { public static void main(String[] args) throws InterruptedException { final Service service=new Service(false); Runnable runnable=new Runnable() { @Override public void run() { System.out.println("★线程"+Thread.currentThread().getName()+"运行了"); service.serviceMethod(); } }; Thread[] threadArray=new Thread[10]; for(int i=0;i<10;i++) { threadArray[i]=new Thread(runnable); } for(int i=0;i<10;i++) { threadArray[i].start(); } } }
运行结果:
★线程Thread-2运行了 ★线程Thread-9运行了 ★线程Thread-7运行了 ★线程Thread-0运行了 ★线程Thread-3运行了 ★线程Thread-1运行了 ★线程Thread-6运行了 ★线程Thread-5运行了 ★线程Thread-4运行了 ThreadName=Thread-1获得锁定 ★线程Thread-8运行了 ThreadName=Thread-8获得锁定 ThreadName=Thread-2获得锁定 ThreadName=Thread-7获得锁定 ThreadName=Thread-5获得锁定 ThreadName=Thread-3获得锁定 ThreadName=Thread-4获得锁定 ThreadName=Thread-9获得锁定 ThreadName=Thread-0获得锁定 ThreadName=Thread-6获得锁定
非公平锁的运行结果基本上是乱序的,说明先start()启动的线程不代表先获得锁
10、ReentranLock方法概述:
(1)、int getHoldCount()
getHoldCount()的作用是查询当前线程保持此锁定的个数,也就是调用lock()方法的次数。
(2)、int getQueueLength()
getQueueLength()的作用是返回正等待获取此锁定的线程估计数,比如有5个线程,1个线程首先执行awai()方法,那么在调用getQueueLength()方法后返回值是4,说明有4个线程同时在等待lock的释放。
(3)、int getWaitQueueLength(Condition condition)
getWaitQueueLength(Condition condition)的作用是返回等待与此锁定相关的给定条件Condition的线程估计数,比如有5个线程,每个线程都执行了同一个condition对象的await()方法,则调用getWaitQueueLength(Condition condition)方法时返回的int值是5。
(4)、boolean hasQueuedThread(Thread thread)
hasQueuedThread(Thread thread)的作用是查询指定的线程是否正在等待获取此锁定
hasQueuedThreads()的作用是查询是否有线程正在等待获取此锁定。
(5)、boolean hasWaiters(Condition condition)
hasWaiters(Condition condition)的作用是查询是否有线程正在等待与此锁定有关的condition条件。
(6)、boolean isFair()
isFair()的作用是判断是不是公平锁
(7)、boolean isHeldByCurrentThread()
isHeldByCurrentThread的作用是查询当前线程是否保持此锁定
(8)、boolean isLocked()
isLocked()的作用是查询此锁定是否由任意的线程保持
ReentrantReadWriteLock
类ReentrantLock具有完全互斥排他的效果,即同一时间只有一个线程在执行ReentrantLock.lock()方法后面的任务。这样做虽然保证了实例变量的线程安全性,但效率却是非常低下的。所以在JDK中提供了一种读写锁ReentrantReadWriteLock类,使用它可以加快运行效率,在某些不需要操作实例变量的方法中,完全可以使用读写锁ReentrantReadWriteLock 来提升该方法的代码运行速度。
读写锁表示也有两个锁,一个是读操作相关的锁,也称为共享锁;另一个是写操作相关的锁,也叫排他锁。也就是多个读锁之间不互斥,读锁与写锁互斥,写锁与写锁互斥。在没有线程Thread进行写入操作时,进行读取操作的多个Thread都可以获取读锁,而进行写入操作的Thread只有在获取写锁后才能进行写入操作。即多个Thread可以同时进行读取操作,但是同一时刻只允许一个Thread进行写入操作。
一、ReentrantReadWriteLock读读共享
import java.util.concurrent.locks.ReentrantReadWriteLock; class Service{ private ReentrantReadWriteLock lock=new ReentrantReadWriteLock(); public void read() { try { try { lock.readLock().lock(); System.out.println("获取读锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis()); Thread.sleep(10000); }finally { lock.readLock().unlock(); } }catch(Exception e) { e.printStackTrace(); } } } class MyThreadA extends Thread{ private Service service; public MyThreadA(Service service) { this.service=service; } @Override public void run() { service.read(); } } class MyThreadB extends Thread{ private Service service; public MyThreadB(Service service) { this.service=service; } @Override public void run() { service.read(); } } public class LockTest { public static void main(String[] args) throws InterruptedException { Service service=new Service(); MyThreadA a=new MyThreadA(service); a.setName("A"); MyThreadB b=new MyThreadB(service); b.setName("B"); a.start(); b.start(); } }
运行结果:
获取读锁A 1575611161158 获取读锁B 1575611161158
从输出结果打印的时间来看,两个线程几乎同时进入lock()方法后面的代码。说明在此使用了lock.readLock()读锁可以提高程序运行效率,允许多个线程同时执行lock()方法后面的代码。
二、ReentrantReadWriteLock写写互斥
import java.util.concurrent.locks.ReentrantReadWriteLock; class Service{ private ReentrantReadWriteLock lock=new ReentrantReadWriteLock(); public void write() { try { try { lock.writeLock().lock(); System.out.println("获取写锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis()); Thread.sleep(10000); }finally { lock.writeLock().unlock(); } }catch(Exception e) { e.printStackTrace(); } } } class MyThreadA extends Thread{ private Service service; public MyThreadA(Service service) { this.service=service; } @Override public void run() { service.write(); } } class MyThreadB extends Thread{ private Service service; public MyThreadB(Service service) { this.service=service; } @Override public void run() { service.write(); } } public class LockTest { public static void main(String[] args) throws InterruptedException { Service service=new Service(); MyThreadA a=new MyThreadA(service); a.setName("A"); MyThreadB b=new MyThreadB(service); b.setName("B"); a.start(); b.start(); } }
运行结果:
获取写锁B 1575611458260 获取写锁A 1575611468273
结果显示写锁的效果是同一时间只允许一个线程执行lock()后面的代码
三、ReentrantReadWriteLock读写互斥
import java.util.concurrent.locks.ReentrantReadWriteLock; class Service{ private ReentrantReadWriteLock lock=new ReentrantReadWriteLock(); public void read() { try { try { lock.readLock().lock(); System.out.println("获取读锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis()); Thread.sleep(10000); }finally { lock.readLock().unlock(); } }catch(Exception e) { e.printStackTrace(); } } public void write() { try { try { lock.writeLock().lock(); System.out.println("获取写锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis()); Thread.sleep(10000); }finally { lock.writeLock().unlock(); } }catch(Exception e) { e.printStackTrace(); } } } class MyThreadA extends Thread{ private Service service; public MyThreadA(Service service) { this.service=service; } @Override public void run() { service.read(); } } class MyThreadB extends Thread{ private Service service; public MyThreadB(Service service) { this.service=service; } @Override public void run() { service.write(); } } public class LockTest { public static void main(String[] args) throws InterruptedException { Service service=new Service(); MyThreadA a=new MyThreadA(service); a.setName("A"); MyThreadB b=new MyThreadB(service); b.setName("B"); a.start(); b.start(); } }
运行结果:
获取读锁A 1575611689661 获取写锁B 1575611699665
从读写的时间上可以看出读写的操作时互斥的